
24th International Symposium INFOTEH-JAHORINA, 19-21 March 2025

Unified Workflow for Training and Offline
Evaluation of Recommendation Systems

Veljko Lončarević1, Aleksa Iričanin2, Stefan Ćirković3, Vanja Luković4

University of Kragujevac, Faculty of Technical Sciences

Čačak, Serbia

Email: 1 veljkoloncarevicharry@gmail.com

ORCID: 1 [0009-0007-4296-2709], 2 [0009-0006-8145-403X],
3 [0009-0004-6775-1543], 4 [0000-0002-1887-6102]

Abstract— This paper proposes a streamlined, unified

workflow for training and offline evaluation, designed to

standardize the process and enhance reproducibility across

various recommendation models. The workflow integrates key

components, including data preprocessing, model training,

hyperparameter tuning, and metric computation, into a

cohesive framework. To demonstrate its applicability, the

MovieLens 25M dataset is utilized as a benchmark, and both the

k-Nearest Neighbor and Matrix Factorization are implemented

as recommendation models. The proposed workflow

systematically evaluates the models using accuracy-based and

error-based metrics for comparison. By providing a unified

framework, this research aims to facilitate better comparisons

across recommendation algorithms, promote transparency in

evaluation, and accelerate innovation in the field.

Keywords— recommendation systems, offline evaluation,

unified workflow, evaluation metrics, reproducibility

I. INTRODUCTION

Recommendation systems have become an integral part of
modern digital platforms, enhancing user experiences by
delivering personalized content in various domains such as e-
commerce, streaming services, and social networks. Offline
evaluation techniques, which leverage historical user
interaction data to measure algorithmic effectiveness without
requiring real-time user feedback, are particularly valuable in
scenarios where online testing is impractical or undesired.
Online testing, such as A/B testing, requires deploying
algorithms in a live environment, which can be resource-
intensive, time-consuming, or risky, especially if the system
underperforms and negatively impacts the user experience [1].
In contrast, offline evaluation provides a controlled and
efficient way to benchmark algorithms by simulating their
performance on previously collected data, making it an
essential step in developing and validating recommendation
systems before real-world deployment. While offline
evaluation provides a cost-effective and scalable alternative to
online testing, its effectiveness depends heavily on the rigor
and consistency of the evaluation process.

Despite the widespread adoption of offline evaluation, the
lack of standardized workflows poses significant challenges
for practitioners and researchers. Inconsistent data
preprocessing practices, the variety of evaluation metrics, and
fragmented experimental designs often hinder reproducibility
and comparability across studies. These issues become
particularly pronounced when evaluating different
recommendation algorithms, such as collaborative filtering,
content-based methods, or hybrid approaches, on large-scale
datasets [2].

To address these challenges, this paper introduces a
unified workflow for offline evaluation of recommendation
systems. The workflow consolidates key stages of the
evaluation process, including data preparation, model
training, hyperparameter optimization, prediction generation,
and metric computation, into a cohesive and systematic
framework. By streamlining these steps, the proposed
workflow ensures consistency, enhances reproducibility, and
provides a robust foundation for benchmarking various
recommendation algorithms.

To demonstrate the utility of this unified workflow, it is
applied to the well-known MovieLens dataset [3], using the k-
Nearest Neighbor and Matrix Factorization algorithms as a
case study. The algorithms' performance is evaluated using a
combination of accuracy-based and error-based metrics,
showcasing the workflow's adaptability to different evaluation
criteria. The findings underscore the strengths and limitations
of this workflow on a large-scale dataset, while also
highlighting the broader implications of adopting a
standardized workflow for offline evaluation.

II. METHODOLOGY

The proposed workflow is designed to streamline the
training and evaluation process, ensure consistency across
experiments, and facilitate reproducibility. The workflow
consists of four key components: data preparation, model
training, hyperparameter optimization, and metric
computation, as shown on Fig. 1. This section outlines each
component in detail and describes their role in the unified
framework.

Fig. 1. Main methodology components

A. Data Preparation

Data preparation is the first step in the workflow, making
sure the dataset is properly structured, and cleaned to facilitate
reliable training and evaluation of recommendation models.
This step involves several distinct processes, each of which
addresses a specific aspect of data quality and suitability.

The first process is Data Cleaning – ensuring the dataset
is free of errors and inconsistencies is vital for accurate model
training and evaluation [4]. It includes the following sub-
processes:

• Removing Duplicates – Duplicate entries can distort
evaluation metrics and unfairly favor certain

-101-

mailto:veljkoloncarevicharry@gmail.com

recommendations. Duplicate interactions are identified
and removed to maintain data integrity.

• Handling Missing Values – Missing data can
introduce bias or reduce model accuracy. Techniques
like mean imputation (for numerical features), mode
imputation (for categorical features), or collaborative
filtering can be used to estimate missing values.

• Addressing Inconsistencies – Erroneous values (e.g.,
invalid timestamps or out-of-range ratings) are
identified and corrected or removed. For example,
ratings outside a predefined scale (e.g., 1 to 5) might
be flagged for correction.

The order of aforementioned subprocesses is as shown in
Fig. 2.

Fig. 2. Order of subprocesses during data cleaning

The second process of data preparation is Feature
Engineering, which enhances the dataset by generating
additional variables that provide more context or predictive
power for the recommendation algorithm. As part of the
workflow, it is suggested to first consider the following types
of features:

• User Features – Incorporating user demographics
(e.g., age, gender, location) can help the model capture
user-specific preferences.

• Item Features – Attributes like genre, category, or
price of an item can enrich the data and improve
recommendation quality.

• Contextual Features – Features such as timestamps,
device type, or session information can provide
additional context to better model user behavior.

• Interaction Features – Deriving features from
historical interactions, such as the average rating a user
gives or the popularity of an item, can reveal trends or
biases in the data.

The final process of data preparation is Data Splitting,
where the dataset is split into three parts – training, validation
and test. Dividing the dataset into distinct subsets for training,
validation, and testing is crucial to evaluate model
performance effectively. For datasets involving time-sensitive
interactions (e.g., movie ratings or purchases over time), a
temporal split is recommended. Here, interactions are ordered
chronologically, and the most recent interactions are allocated
to the validation and test sets. This approach simulates real-
world scenarios where future interactions are predicted based
on past behavior. For datasets without a temporal component
or when interactions are static, a random split can be
employed. This method randomly assigns data points to the
training, validation, and test sets, ensuring a balanced
distribution of users and items across subsets. Common
splitting ratios are 80% for training, 10% for validation, and

10% for testing [5], though these can be adjusted based on
dataset size and application requirements.

B. Model Training

The model training step involves creating a model that can
accurately predict user preferences or recommend relevant
items. This phase translates raw input data into a trained model
capable of generating recommendations by learning patterns,
relationships, and preferences within the data. The processes
in this step are not necessarily sequential and allow for
combinations of different categories. Below is presented a
detailed breakdown of the key processes involved in the
model training step, as shown on Fig. 3.

Fig. 3. Model training processes

Before training the model, the first process – determining
recommendation task – requires to determine the type of
recommendation system being developed. The task can
generally fall into one of the following categories [6]:

• Collaborative Filtering – Uses user-item interaction
data to recommend items based on similarities between
users or items.

• Content-Based Filtering – Recommends items
similar to what a user has interacted with, based on
features of the items (e.g., genres, descriptions).

• Hybrid Systems – Combines collaborative filtering
and content-based methods for improved accuracy and
diversity.

The second process, Input Representation, consists of
choosing the best way to prepare the dataset for model
training. Preparing the data for the model involves converting
dataset from the previous step containing preprocessed user-
item interactions into a structured format suitable for training.
Some of the most commonly used techniques for input
representation are as follows:

• User-Item Interaction Matrix – The core input for
collaborative filtering models, representing user
preferences as a sparse matrix (rows as users, columns
as items, and values as interactions such as ratings or
clicks).

• Feature Vectors – For content-based or hybrid
models, user and item features are encoded as vectors,
often including metadata such as demographics, item
attributes, or contextual information.

-102-

• Temporal Information – Time-based data can be
included to capture evolving user preferences or item
popularity.

Choosing a model architecture is closely connected to
the type of a recommendation task at hand, as well as the
amount of data available. Most commonly used choices
include:

• Neighbor-based Models – Simpler models like k-
Nearest Neighbors (kNN), which recommend based on
the most similar users or items.

• Latent Factor Models – Techniques like Matrix
Factorization (e.g., Singular Value Decomposition or
Alternating Least Squares) that decompose the
interaction matrix into latent features for users and
items.

• Deep Learning Models – Neural networks such as
autoencoders, recurrent neural networks (RNNs), or
transformers are used for complex tasks involving
high-dimensional data or sequential patterns.

Training recommendation models on large datasets is
often computationally expensive, therefore various techniques
have been invented in order to improve scalability of the
model training, and some of the most commonly used are:

• Batch Processing – Dividing the data into smaller
subsets (batches) for processing.

• Distributed Training – Leveraging distributed
systems (e.g., Apache Spark, TensorFlow distributed)
to parallelize computations.

• Approximation Techniques – Reducing computation
complexity, such as using approximate nearest
neighbor (ANN) methods for large-scale kNN.

C. Hyperparameter Optimization

Hyperparameter optimization is the step in which the best
combination of hyperparameters is selected for a machine
learning model to maximize its performance on a given task.
Unlike model parameters (e.g., weights in a neural network)
that are learned during training, hyperparameters are set
before training begins and influence how the model learns or
performs. Examples of hyperparameters include learning rate
in gradient descent algorithms, regularization strength (e.g.,
L1 or L2 penalty), number of latent factors in matrix
factorization, number of neighbors in k-Nearest Neighbors,
batch size or number of epochs in deep learning. Proper
hyperparameter optimization can significantly improve a
model's accuracy, generalizability, and efficiency. Tuning
hyperparameters can minimize training loss and improve
metrics on validation or test datasets. Properly chosen
hyperparameters help balance bias and variance, ensuring the
model generalizes well to unseen data. Optimized
hyperparameters can reduce computational time and resource
usage by avoiding poorly performing configurations.
Different datasets and tasks require different hyperparameter
configurations for optimal results. Hyperparameter
optimization is carried out in four processes outlined in Fig. 4.

Identifying the hyperparameters for optimization is the
first process in hyperparameter optimization. This involves
determining which settings of the model or training process
should be tuned to improve performance. Different models
have distinct hyperparameters. For example, kNNs have the

number of neighbors (k) and a distance metric (e.g.,
Euclidean, cosine), while neural networks have learning rate,
batch size, number of layers, number of units per layer, and
dropout rate. It is also necessary to focus on hyperparameters
that significantly affect performance. For example, in neural
networks, the learning rate is usually critical. It is also advised
to avoid optimizing too many hyperparameters
simultaneously, as it can increase computational cost and
complexity.

Fig. 4. Hyperparameter optimization processes

The search space defines the range of possible values for
each hyperparameter. Properly defining this space is essential
to ensure that the optimization algorithm can explore
meaningful configurations. Different hyperparameters may
accept different types of values, including continuous, discrete
and categorical values. It is advised to base the range on prior
knowledge of the problem and the algorithm. Best practices
include using domain expertise to narrow down search ranges
and avoid wasteful exploration, and starting with a broader
range for initial searches and refining based on initial results.

Selecting an optimization method depends on the size of
the search space, available computational resources, and the
importance of hyperparameter interactions. Common
optimization methods include the following:

• Grid Search - Systematically evaluates all possible
combinations of hyperparameters in the defined search
space. Best for small and discrete search spaces but
computationally expensive for large ones.

• Random Search - Samples random combinations
from the search space. Efficient for high-dimensional
search spaces, as it covers a broader area compared to
grid search.

• Bayesian Optimization - Models the objective
function probabilistically and uses prior evaluations to
inform future exploration. Efficient for expensive-to-
train models but computationally complex.

• Advanced Algorithms – e.g., Hyperband combines
random search with early stopping, which is efficient
for scenarios with limited computational resources.
Evolutionary algorithms mimic natural selection by
evolving hyperparameter configurations over multiple
generations, which is suitable for very complex or non-
differentiable search spaces [7].

The process of systematically tracking and recording the
results of different hyperparameter configurations is
important to analyze and compare performance of different
hyperparameter configurations. It is necessary to track
hyperparameter settings, including the values of each

-103-

hyperparameter for every run (e.g., learning rate, batch size,
number of latent factors); performance metrics - key
evaluation metrics like accuracy, precision, recall, RMSE,
MAE, or NDCG for each configuration; training statistics -
metrics like training time, validation loss, and resource
utilization (e.g., memory or GPU usage); and metadata,
including details such as dataset version, runtime
environment, and seed values for reproducibility. Automatic
logging tools are available for this purpose - it is advised to
use tools or frameworks designed for experiment tracking,
such as MLflow.

D. Metric Computation

The final component of the proposed workflow focuses on
evaluating the model's performance. This phase ensures a
comprehensive understanding of how well the
recommendation system meets its objectives by employing
various evaluation metrics. These metrics allow researchers
and practitioners to assess different aspects of the model, from
accuracy to broader impacts like user experience. The
workflow supports the following categories of evaluation
(Fig. 5):

Fig. 5. Types of metrics for model evaluation

• Accuracy-Based Metrics – Accuracy-based metrics
measure how effectively the recommendation system
identifies relevant items for users. These metrics are
particularly useful when the goal is to optimize for the
correct identification of items within the top-k
recommendations. The most commonly used metrics
in this category are Precision@k, Recall@k, F1@k.

• Ranking-Based Metrics – Ranking-based metrics
evaluate the quality of the order in which
recommendations are presented. These metrics ensure
that not only are the correct items included in the
recommendations, but that they are prioritized
effectively. These metrics include Normalized
Discounted Cumulative Gain (NDCG) which
measures the usefulness of recommendations based on
their rank position; Hit Rate (HR@k) which measures
the proportion of users for whom at least one relevant
item appears in the top-k recommendations.

• Error-Based Metrics – Error-based metrics assess the
accuracy of the predicted ratings compared to the true
ratings. These metrics are especially important for
models designed to predict explicit ratings, such as star
ratings for movies. Most commonly used metrics in
this category include Root Mean Square Error (RMSE)
and Mean Absolute Error (MAE).

• Beyond-Accuracy Metrics – Accuracy is not always
sufficient to evaluate recommendation systems
comprehensively. Beyond-accuracy metrics consider
aspects that improve the overall user experience and
system utility [8]. These metrics are Diversity, which

evaluates how varied the recommendations are. High
diversity ensures that users are exposed to a broader
range of items, reducing redundancy; Serendipity,
which measures the ability of the system to suggest
items that are both relevant and surprising to the user;
Coverage, which evaluates the proportion of the total
item catalog that is recommended across all users;
Novelty, which focuses on recommending items that
are less popular or less well-known, helping users
discover new content.

III. THE EXPERIMENT

We conducted experiments on the large-scale MovieLens
dataset, which consists of 32 million user ratings for movies.
Our objective was to evaluate the performance of two
recommendation approaches: K-Nearest Neighbors and
Matrix Factorization. The experiments were implemented in
Python using Jupyter Notebook and libraries such as pandas,
numpy, scikit-surprise and scikit-learn.

A. Data Preparation

The dataset was analyzed to ensure quality, revealing no
duplicates or missing values. It was then transformed into a
user-item rating matrix, where rows represented users,
columns represented movies, and cells contained ratings (Fig.
6). Missing values were filled with zeros for KNN, while MF
naturally handled sparsity. A temporal split strategy was
applied: 80% of the oldest ratings were allocated for training,
with 10% each for validation and testing, simulating real-
world recommendation scenarios.

Fig. 6. User-rating interaction matrix sample

B. Model Training

KNN was employed using item-based collaborative
filtering. Similarity between items was computed using cosine
similarity, and predictions were made by averaging the ratings
of the k most similar items. The initial k value was set to 10,
with tuning performed during optimization.

MF decomposes the user-item matrix into latent factors,
capturing hidden relationships. We implemented Singular
Value Decomposition (SVD), which factorizes the matrix into
user and item embeddings. Predictions were generated by
computing the dot product of these embeddings.

Both models had problems handling large-scale
MovieLens dataset (which contains over 32 million rows)
without any optimizations. To handle the large MovieLens
dataset, KNN required optimization techniques – batch
processing combined with parallelization and the use of

-104-

KNNWithMeans from scikit-surprise. Batch processing
allowed the model to manage memory usage by processing
smaller subsets of the data at a time, while parallelization
accelerated computation by distributing the workload across
multiple processors. KNNWithMeans further improved
performance by using user-based mean ratings to handle large
sparse datasets efficiently. On the other hand, Matrix
Factorization SVD was optimized using mini-batches with
Stochastic Gradient Descent (SGD), allowing the model to
incrementally update latent factors based on small batches of
data, thus reducing memory requirements and speeding up
convergence without needing to process the entire matrix at
once.

C. Hyperparameter Optimization

Grid Search was used to tune hyperparameters for both
models:

- KNN: The optimal number of neighbors (k) was
selected from {10, 15, ..., 50}, tested with different
distance metrics ('euclidean', 'manhattan',
'minkowski') and weighting schemes ('uniform',
'distance').

- MF: The number of latent factors was varied in {10,
20, ..., 100}, with different regularization values to
prevent overfitting.

Optimization was guided by RMSE. Grid Search was
performed to optimize hyperparameters for both KNN and MF
models. For KNN the best configuration was determined to be
k=50 and MSD similarity. For MF, the search identified
n_factors=100 and reg_all=0.1 as optimal. The results of this
parameter tuning are summarized in Fig. 7.

Fig. 7. Grid search results

D. Metric Computation

Once the hyperparameters were optimized using the
training and validation subsets, the models were retrained
using the entire training subset (80% of the data) along with
the selected hyperparameters. This allowed the models to
learn from as much data as possible before final evaluation.
After retraining, the models were evaluated on the test subset
(10% of the data) to assess its final performance. Performance
metrics (RMSE, Precision@k, MAE, F1@k) were calculated
on the test set. This test set was kept separate during the
optimization process, ensuring that the models' evaluation on
this set reflected their ability to generalize to entirely unseen
data. After calculating performance metrics, the results were
stored into a separate csv file, allowing comparison between
two models (Fig. 8).

Fig. 8. Model performance comparison

The evaluation results of the KNN and SVD models show
differing strengths depending on the metric. The KNN model
has a higher RMSE and MAE, indicating that it might produce
larger errors in prediction. However, its Precision@k (0.6517)
and F1@k (0.6392) are lower compared to the SVD model,
which performs slightly better in these metrics (Precision@k
of 0.6566 and F1@k of 0.6640). This suggests that while KNN
may be less accurate overall, it might offer better
recommendation relevance for specific users, especially when
the focus is on ranking precision and balance between
precision and recall. On the other hand, SVD, with better
RMSE and MAE, might be preferable when prediction
accuracy is more critical. The choice between the models
should depend on the specific use case, such as prioritizing
accurate predictions (SVD) or higher relevance in
recommendations (KNN).

During the model evaluation, the Python logging library is
employed to track and store detailed information about the
progress and results of the model tuning, listing dataset
version, timestamp, model version and performance metrics,
which allow for thorough analysis of previous and current
versions of the model (Example given on Fig. 9.).

Fig. 9. Model version analysis

This enables a clear comparison of current and past
models, facilitating informed decisions about the best-
performing model for deployment.

IV. SIMILAR RESEARCH

Our work proposes a unified workflow for training and
offline evaluation of recommendation systems, focusing on
reproducibility and standardized evaluation. This aligns with
two key frameworks in the field: FEVR [9] and Elliot [10].

The FEVR framework organizes evaluation processes by
categorizing facets like evaluation goals, methods, and
metrics. While similar in its emphasis on comprehensive
evaluation, our work provides a more practical, executable
framework, integrating data preprocessing, model training,
and metric computation into a unified process, making it
easier to compare recommendation algorithms.

The Elliot framework standardizes the entire evaluation
pipeline, including hyperparameter optimization and
statistical analysis. While Elliot offers more flexibility with a
wide range of data processing strategies and metrics, our
approach focuses on simplicity, providing a streamlined and
easily reproducible workflow.

While both FEVR and Elliot contribute significantly to the
evaluation landscape, our research provides a focused, user
and beginner-friendly workflow that prioritizes clarity, ease of
use, and reproducibility.

V. CONCLUSION

The workflow employed in this experiment significantly
streamlined the process of training and offline evaluation of a

-105-

recommendation system, transforming it into a more efficient,
systematic, and transparent procedure. By adhering to a well-
defined sequence of four core steps—Data Preparation, Model
Training, Hyperparameter Optimization, and Metric
Computation—we were able to methodically optimize two
models for performance and rigorously evaluate their
predictive capabilities. Each step played a pivotal role in
ensuring models' effectiveness, from preprocessing the data to
the final assessment of their performance on unseen test data.

Together, these four steps created a comprehensive and
structured framework for training and offline evaluation of a
recommendation system. By following this workflow, we
were able to optimize the models for performance, ensure that
they were robustly evaluated, and produce a recommendation
system that is capable of making reliable predictions. The
methodology is not only valuable for this specific experiment
but also serves as a solid foundation for future research in
recommendation systems, providing a clear, reproducible
process for building models and evaluating their effectiveness.

ACKNOWLEDGMENT

This study was supported by the Ministry of Science,
Technological Development and Innovation of the Republic
of Serbia, and these results are parts of Grant No. 451-03-66 /
2024-03 / 200132 with the University of Kragujevac - Faculty
of Technical Sciences Čačak.

REFERENCES

[1] J. Beel and S. Langer, A Comparison of Offline Evaluations, Online
Evaluations, and User Studies in the Context of Research-Paper
Recommender Systems, Research and Advanced Technology for
Digital Libraries. TPDL 2015. Lecture Notes in Computer Science, vol.
9316, pp. 153–168, 2015. doi: 10.1007/978-3-319-24592-8_12.

[2] S. Khusro, Z. Ali, and I. Ullah, "Recommender Systems: Issues,
Challenges, and Research Opportunities," Information Science and

Applications (ICISA) 2016. Lecture Notes in Electrical Engineering,
vol. 376, pp. 1179–1189, 2016. doi: 10.1007/978-981-10-0557-2_112.

[3] F. Maxwell Harper and J. A. Konstan, "The MovieLens Datasets:
History and Context," ACM Transactions on Interactive Intelligent
Systems (TiiS), vol. 5, no. 4, pp. 1–19, Dec. 2015. doi:
10.1145/2827872.

[4] X. Chu, I. F. Ilyas, S. Krishnan, and J. Wang, "Data Cleaning:
Overview and Emerging Challenges," Proceedings of the 2016
International Conference on Management of Data (SIGMOD '16), pp.
2201–2206, 2016. doi: 10.1145/2882903.2912574.

[5] R. R. Picard and K. N. Berk, "Data Splitting," The American
Statistician, vol. 44, no. 2, pp. 140–147, May 1990. doi:
10.1080/00031305.1990.10475704.

[6] S. Gupta and A. Maithani, "A Literature Review on Recommendation
Systems," International Research Journal of Engineering and
Technology (IRJET), vol. 7, no. 9, pp. 634–637, Sep. 2020. [Online].
Available: https://www.irjet.net/archives/V7/i9/IRJET-V7I9633.pdf.

[7] L. Cui, P. Ou, X. Fu, Z. Wen, and N. Lu, "A novel multi-objective
evolutionary algorithm for recommendation systems," Journal of
Parallel and Distributed Computing, vol. 103, pp. 53–63, 2017. doi:
10.1016/j.jpdc.2016.10.014.

[8] M. Ge, C. Delgado-Battenfeld, and D. Jannach, "Beyond accuracy:
evaluating recommender systems by coverage and serendipity," in
Proceedings of the Fourth ACM Conference on Recommender
Systems, Barcelona, Spain, 2010, pp. 257–260. doi:
10.1145/1864708.1864761.

[9] E. Zangerle and C. Bauer, "Evaluating recommender systems: Survey
and framework," ACM Comput. Surv., vol. 55, no. 8, pp. 170:1–
170:38, Dec. 2022, doi: 10.1145/3556536. [Online]. Available:
https://doi.org/10.1145/3556536.

[10] V. W. Anelli, A. Bellogín, A. Ferrara, D. Malitesta, F. A. Merra, C.
Pomo, F. M. Donini, and T. Di Noia, "Elliot: a comprehensive and
rigorous framework for reproducible recommender systems
evaluation," Proc. 44th Int. ACM SIGIR Conf. Res. Develop. Inf.
Retrieval, 2021, pp. 1–10, arXiv:2103.02590.

-106-

