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Abstract— This paper proposes a streamlined, unified 

workflow for training and offline evaluation, designed to 

standardize the process and enhance reproducibility across 

various recommendation models. The workflow integrates key 

components, including data preprocessing, model training, 

hyperparameter tuning, and metric computation, into a 

cohesive framework. To demonstrate its applicability, the 

MovieLens 25M dataset is utilized as a benchmark, and both the 

k-Nearest Neighbor and Matrix Factorization are implemented 

as recommendation models. The proposed workflow 

systematically evaluates the models using accuracy-based and 

error-based metrics for comparison. By providing a unified 

framework, this research aims to facilitate better comparisons 

across recommendation algorithms, promote transparency in 

evaluation, and accelerate innovation in the field. 
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I. INTRODUCTION 

Recommendation systems have become an integral part of 
modern digital platforms, enhancing user experiences by 
delivering personalized content in various domains such as e-
commerce, streaming services, and social networks. Offline 
evaluation techniques, which leverage historical user 
interaction data to measure algorithmic effectiveness without 
requiring real-time user feedback, are particularly valuable in 
scenarios where online testing is impractical or undesired. 
Online testing, such as A/B testing, requires deploying 
algorithms in a live environment, which can be resource-
intensive, time-consuming, or risky, especially if the system 
underperforms and negatively impacts the user experience [1]. 
In contrast, offline evaluation provides a controlled and 
efficient way to benchmark algorithms by simulating their 
performance on previously collected data, making it an 
essential step in developing and validating recommendation 
systems before real-world deployment. While offline 
evaluation provides a cost-effective and scalable alternative to 
online testing, its effectiveness depends heavily on the rigor 
and consistency of the evaluation process. 

Despite the widespread adoption of offline evaluation, the 
lack of standardized workflows poses significant challenges 
for practitioners and researchers. Inconsistent data 
preprocessing practices, the variety of evaluation metrics, and 
fragmented experimental designs often hinder reproducibility 
and comparability across studies. These issues become 
particularly pronounced when evaluating different 
recommendation algorithms, such as collaborative filtering, 
content-based methods, or hybrid approaches, on large-scale 
datasets [2]. 

To address these challenges, this paper introduces a 
unified workflow for offline evaluation of recommendation 
systems. The workflow consolidates key stages of the 
evaluation process, including data preparation, model 
training, hyperparameter optimization, prediction generation, 
and metric computation, into a cohesive and systematic 
framework. By streamlining these steps, the proposed 
workflow ensures consistency, enhances reproducibility, and 
provides a robust foundation for benchmarking various 
recommendation algorithms. 

To demonstrate the utility of this unified workflow, it is 
applied to the well-known MovieLens dataset [3], using the k-
Nearest Neighbor and Matrix Factorization algorithms as a 
case study. The algorithms' performance is evaluated using a 
combination of accuracy-based and error-based metrics, 
showcasing the workflow's adaptability to different evaluation 
criteria. The findings underscore the strengths and limitations 
of this workflow on a large-scale dataset, while also 
highlighting the broader implications of adopting a 
standardized workflow for offline evaluation. 

II. METHODOLOGY 

The proposed workflow is designed to streamline the 
training and evaluation process, ensure consistency across 
experiments, and facilitate reproducibility. The workflow 
consists of four key components: data preparation, model 
training, hyperparameter optimization, and metric 
computation, as shown on Fig. 1. This section outlines each 
component in detail and describes their role in the unified 
framework. 

 

Fig. 1. Main methodology components 

A. Data Preparation 

Data preparation is the first step in the workflow, making 
sure the dataset is properly structured, and cleaned to facilitate 
reliable training and evaluation of recommendation models. 
This step involves several distinct processes, each of which 
addresses a specific aspect of data quality and suitability.  

The first process is Data Cleaning – ensuring the dataset 
is free of errors and inconsistencies is vital for accurate model 
training and evaluation [4]. It includes the following sub-
processes:  

• Removing Duplicates – Duplicate entries can distort 
evaluation metrics and unfairly favor certain 
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recommendations. Duplicate interactions are identified 
and removed to maintain data integrity. 

• Handling Missing Values – Missing data can 
introduce bias or reduce model accuracy. Techniques 
like mean imputation (for numerical features), mode 
imputation (for categorical features), or collaborative 
filtering can be used to estimate missing values. 

• Addressing Inconsistencies – Erroneous values (e.g., 
invalid timestamps or out-of-range ratings) are 
identified and corrected or removed. For example, 
ratings outside a predefined scale (e.g., 1 to 5) might 
be flagged for correction. 

The order of aforementioned subprocesses is as shown in 
Fig. 2. 

 

Fig. 2. Order of subprocesses during data cleaning 

The second process of data preparation is Feature 
Engineering, which enhances the dataset by generating 
additional variables that provide more context or predictive 
power for the recommendation algorithm. As part of the 
workflow, it is suggested to first consider the following types 
of features: 

• User Features – Incorporating user demographics 
(e.g., age, gender, location) can help the model capture 
user-specific preferences. 

• Item Features – Attributes like genre, category, or 
price of an item can enrich the data and improve 
recommendation quality. 

• Contextual Features – Features such as timestamps, 
device type, or session information can provide 
additional context to better model user behavior. 

• Interaction Features – Deriving features from 
historical interactions, such as the average rating a user 
gives or the popularity of an item, can reveal trends or 
biases in the data. 

The final process of data preparation is Data Splitting, 
where the dataset is split into three parts – training, validation 
and test. Dividing the dataset into distinct subsets for training, 
validation, and testing is crucial to evaluate model 
performance effectively. For datasets involving time-sensitive 
interactions (e.g., movie ratings or purchases over time), a 
temporal split is recommended. Here, interactions are ordered 
chronologically, and the most recent interactions are allocated 
to the validation and test sets. This approach simulates real-
world scenarios where future interactions are predicted based 
on past behavior. For datasets without a temporal component 
or when interactions are static, a random split can be 
employed. This method randomly assigns data points to the 
training, validation, and test sets, ensuring a balanced 
distribution of users and items across subsets. Common 
splitting ratios are 80% for training, 10% for validation, and 

10% for testing [5], though these can be adjusted based on 
dataset size and application requirements. 

B. Model Training 

The model training step involves creating a model that can 
accurately predict user preferences or recommend relevant 
items. This phase translates raw input data into a trained model 
capable of generating recommendations by learning patterns, 
relationships, and preferences within the data. The processes 
in this step are not necessarily sequential and allow for 
combinations of different categories. Below is presented a 
detailed breakdown of the key processes involved in the 
model training step, as shown on Fig. 3. 

 

Fig. 3. Model training processes 

Before training the model, the first process – determining 
recommendation task – requires to determine the type of 
recommendation system being developed. The task can 
generally fall into one of the following categories [6]: 

• Collaborative Filtering – Uses user-item interaction 
data to recommend items based on similarities between 
users or items. 

• Content-Based Filtering – Recommends items 
similar to what a user has interacted with, based on 
features of the items (e.g., genres, descriptions). 

• Hybrid Systems – Combines collaborative filtering 
and content-based methods for improved accuracy and 
diversity. 

The second process, Input Representation, consists of 
choosing the best way to prepare the dataset for model 
training. Preparing the data for the model involves converting 
dataset from the previous step containing preprocessed user-
item interactions into a structured format suitable for training. 
Some of the most commonly used techniques for input 
representation are as follows: 

• User-Item Interaction Matrix – The core input for 
collaborative filtering models, representing user 
preferences as a sparse matrix (rows as users, columns 
as items, and values as interactions such as ratings or 
clicks). 

• Feature Vectors – For content-based or hybrid 
models, user and item features are encoded as vectors, 
often including metadata such as demographics, item 
attributes, or contextual information. 
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• Temporal Information – Time-based data can be 
included to capture evolving user preferences or item 
popularity. 

Choosing a model architecture is closely connected to 
the type of a recommendation task at hand, as well as the 
amount of data available. Most commonly used choices 
include: 

• Neighbor-based Models – Simpler models like k-
Nearest Neighbors (kNN), which recommend based on 
the most similar users or items. 

• Latent Factor Models – Techniques like Matrix 
Factorization (e.g., Singular Value Decomposition or 
Alternating Least Squares) that decompose the 
interaction matrix into latent features for users and 
items. 

• Deep Learning Models – Neural networks such as 
autoencoders, recurrent neural networks (RNNs), or 
transformers are used for complex tasks involving 
high-dimensional data or sequential patterns. 

Training recommendation models on large datasets is 
often computationally expensive, therefore various techniques 
have been invented in order to improve scalability of the 
model training, and some of the most commonly used are: 

• Batch Processing – Dividing the data into smaller 
subsets (batches) for processing. 

• Distributed Training – Leveraging distributed 
systems (e.g., Apache Spark, TensorFlow distributed) 
to parallelize computations. 

• Approximation Techniques – Reducing computation 
complexity, such as using approximate nearest 
neighbor (ANN) methods for large-scale kNN. 

C. Hyperparameter Optimization 

Hyperparameter optimization is the step in which the best 
combination of hyperparameters is selected for a machine 
learning model to maximize its performance on a given task. 
Unlike model parameters (e.g., weights in a neural network) 
that are learned during training, hyperparameters are set 
before training begins and influence how the model learns or 
performs. Examples of hyperparameters include learning rate 
in gradient descent algorithms, regularization strength (e.g., 
L1 or L2 penalty), number of latent factors in matrix 
factorization, number of neighbors in k-Nearest Neighbors, 
batch size or number of epochs in deep learning. Proper 
hyperparameter optimization can significantly improve a 
model's accuracy, generalizability, and efficiency. Tuning 
hyperparameters can minimize training loss and improve 
metrics on validation or test datasets. Properly chosen 
hyperparameters help balance bias and variance, ensuring the 
model generalizes well to unseen data. Optimized 
hyperparameters can reduce computational time and resource 
usage by avoiding poorly performing configurations. 
Different datasets and tasks require different hyperparameter 
configurations for optimal results. Hyperparameter 
optimization is carried out in four processes outlined in Fig. 4. 

Identifying the hyperparameters for optimization is the 
first process in hyperparameter optimization. This involves 
determining which settings of the model or training process 
should be tuned to improve performance. Different models 
have distinct hyperparameters. For example, kNNs have the 

number of neighbors (k) and a distance metric (e.g., 
Euclidean, cosine), while neural networks have learning rate, 
batch size, number of layers, number of units per layer, and 
dropout rate. It is also necessary to focus on hyperparameters 
that significantly affect performance. For example, in neural 
networks, the learning rate is usually critical. It is also advised 
to avoid optimizing too many hyperparameters 
simultaneously, as it can increase computational cost and 
complexity. 

 

Fig. 4. Hyperparameter optimization processes 

The search space defines the range of possible values for 
each hyperparameter. Properly defining this space is essential 
to ensure that the optimization algorithm can explore 
meaningful configurations. Different hyperparameters may 
accept different types of values, including continuous, discrete 
and categorical values. It is advised to base the range on prior 
knowledge of the problem and the algorithm. Best practices 
include using domain expertise to narrow down search ranges 
and avoid wasteful exploration, and starting with a broader 
range for initial searches and refining based on initial results. 

Selecting an optimization method depends on the size of 
the search space, available computational resources, and the 
importance of hyperparameter interactions. Common 
optimization methods include the following: 

• Grid Search - Systematically evaluates all possible 
combinations of hyperparameters in the defined search 
space. Best for small and discrete search spaces but 
computationally expensive for large ones. 

• Random Search - Samples random combinations 
from the search space. Efficient for high-dimensional 
search spaces, as it covers a broader area compared to 
grid search. 

• Bayesian Optimization - Models the objective 
function probabilistically and uses prior evaluations to 
inform future exploration. Efficient for expensive-to-
train models but computationally complex. 

• Advanced Algorithms – e.g., Hyperband combines 
random search with early stopping, which is efficient 
for scenarios with limited computational resources. 
Evolutionary algorithms mimic natural selection by 
evolving hyperparameter configurations over multiple 
generations, which is suitable for very complex or non-
differentiable search spaces [7]. 

The process of systematically tracking and recording the 
results of different hyperparameter configurations is 
important to analyze and compare performance of different 
hyperparameter configurations. It is necessary to track 
hyperparameter settings, including the values of each 
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hyperparameter for every run (e.g., learning rate, batch size, 
number of latent factors); performance metrics - key 
evaluation metrics like accuracy, precision, recall, RMSE, 
MAE, or NDCG for each configuration; training statistics - 
metrics like training time, validation loss, and resource 
utilization (e.g., memory or GPU usage); and metadata, 
including details such as dataset version, runtime 
environment, and seed values for reproducibility. Automatic 
logging tools are available for this purpose - it is advised to 
use tools or frameworks designed for experiment tracking, 
such as MLflow. 

D. Metric Computation 

The final component of the proposed workflow focuses on 
evaluating the model's performance. This phase ensures a 
comprehensive understanding of how well the 
recommendation system meets its objectives by employing 
various evaluation metrics. These metrics allow researchers 
and practitioners to assess different aspects of the model, from 
accuracy to broader impacts like user experience. The 
workflow supports the following categories of evaluation 
(Fig. 5): 

 

Fig. 5. Types of metrics for model evaluation 

• Accuracy-Based Metrics – Accuracy-based metrics 
measure how effectively the recommendation system 
identifies relevant items for users. These metrics are 
particularly useful when the goal is to optimize for the 
correct identification of items within the top-k 
recommendations. The most commonly used metrics 
in this category are Precision@k, Recall@k, F1@k. 

• Ranking-Based Metrics – Ranking-based metrics 
evaluate the quality of the order in which 
recommendations are presented. These metrics ensure 
that not only are the correct items included in the 
recommendations, but that they are prioritized 
effectively. These metrics include Normalized 
Discounted Cumulative Gain (NDCG) which 
measures the usefulness of recommendations based on 
their rank position; Hit Rate (HR@k) which measures 
the proportion of users for whom at least one relevant 
item appears in the top-k recommendations. 

• Error-Based Metrics – Error-based metrics assess the 
accuracy of the predicted ratings compared to the true 
ratings. These metrics are especially important for 
models designed to predict explicit ratings, such as star 
ratings for movies. Most commonly used metrics in 
this category include Root Mean Square Error (RMSE) 
and Mean Absolute Error (MAE). 

• Beyond-Accuracy Metrics – Accuracy is not always 
sufficient to evaluate recommendation systems 
comprehensively. Beyond-accuracy metrics consider 
aspects that improve the overall user experience and 
system utility [8]. These metrics are Diversity, which 

evaluates how varied the recommendations are. High 
diversity ensures that users are exposed to a broader 
range of items, reducing redundancy; Serendipity, 
which measures the ability of the system to suggest 
items that are both relevant and surprising to the user; 
Coverage, which evaluates the proportion of the total 
item catalog that is recommended across all users; 
Novelty, which focuses on recommending items that 
are less popular or less well-known, helping users 
discover new content. 

III. THE EXPERIMENT 

We conducted experiments on the large-scale MovieLens 
dataset, which consists of 32 million user ratings for movies. 
Our objective was to evaluate the performance of two 
recommendation approaches: K-Nearest Neighbors and 
Matrix Factorization. The experiments were implemented in 
Python using Jupyter Notebook and libraries such as pandas, 
numpy, scikit-surprise and scikit-learn. 

A. Data Preparation 

The dataset was analyzed to ensure quality, revealing no 
duplicates or missing values. It was then transformed into a 
user-item rating matrix, where rows represented users, 
columns represented movies, and cells contained ratings (Fig. 
6). Missing values were filled with zeros for KNN, while MF 
naturally handled sparsity. A temporal split strategy was 
applied: 80% of the oldest ratings were allocated for training, 
with 10% each for validation and testing, simulating real-
world recommendation scenarios. 

 

Fig. 6. User-rating interaction matrix sample 

B. Model Training 

KNN was employed using item-based collaborative 
filtering. Similarity between items was computed using cosine 
similarity, and predictions were made by averaging the ratings 
of the k most similar items. The initial k value was set to 10, 
with tuning performed during optimization. 

MF decomposes the user-item matrix into latent factors, 
capturing hidden relationships. We implemented Singular 
Value Decomposition (SVD), which factorizes the matrix into 
user and item embeddings. Predictions were generated by 
computing the dot product of these embeddings. 

Both models had problems handling large-scale 
MovieLens dataset (which contains over 32 million rows) 
without any optimizations. To handle the large MovieLens 
dataset, KNN required optimization techniques – batch 
processing combined with parallelization and the use of 
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KNNWithMeans from scikit-surprise. Batch processing 
allowed the model to manage memory usage by processing 
smaller subsets of the data at a time, while parallelization 
accelerated computation by distributing the workload across 
multiple processors. KNNWithMeans further improved 
performance by using user-based mean ratings to handle large 
sparse datasets efficiently. On the other hand, Matrix 
Factorization SVD was optimized using mini-batches with 
Stochastic Gradient Descent (SGD), allowing the model to 
incrementally update latent factors based on small batches of 
data, thus reducing memory requirements and speeding up 
convergence without needing to process the entire matrix at 
once. 

C. Hyperparameter Optimization 

Grid Search was used to tune hyperparameters for both 
models: 

- KNN: The optimal number of neighbors (k) was 
selected from {10, 15, ..., 50}, tested with different 
distance metrics ('euclidean', 'manhattan', 
'minkowski') and weighting schemes ('uniform', 
'distance'). 

- MF: The number of latent factors was varied in {10, 
20, ..., 100}, with different regularization values to 
prevent overfitting. 

Optimization was guided by RMSE. Grid Search was 
performed to optimize hyperparameters for both KNN and MF 
models. For KNN the best configuration was determined to be 
k=50 and MSD similarity. For MF, the search identified 
n_factors=100 and reg_all=0.1 as optimal. The results of this 
parameter tuning are summarized in Fig. 7. 

 

Fig. 7. Grid search results 

D. Metric Computation 

Once the hyperparameters were optimized using the 
training and validation subsets, the models were retrained 
using the entire training subset (80% of the data) along with 
the selected hyperparameters. This allowed the models to 
learn from as much data as possible before final evaluation. 
After retraining, the models were evaluated on the test subset 
(10% of the data) to assess its final performance. Performance 
metrics (RMSE, Precision@k, MAE, F1@k) were calculated 
on the test set. This test set was kept separate during the 
optimization process, ensuring that the models' evaluation on 
this set reflected their ability to generalize to entirely unseen 
data. After calculating performance metrics, the results were 
stored into a separate csv file, allowing comparison between 
two models (Fig. 8). 

 

Fig. 8. Model performance comparison 

The evaluation results of the KNN and SVD models show 
differing strengths depending on the metric. The KNN model 
has a higher RMSE and MAE, indicating that it might produce 
larger errors in prediction. However, its Precision@k (0.6517) 
and F1@k (0.6392) are lower compared to the SVD model, 
which performs slightly better in these metrics (Precision@k 
of 0.6566 and F1@k of 0.6640). This suggests that while KNN 
may be less accurate overall, it might offer better 
recommendation relevance for specific users, especially when 
the focus is on ranking precision and balance between 
precision and recall. On the other hand, SVD, with better 
RMSE and MAE, might be preferable when prediction 
accuracy is more critical. The choice between the models 
should depend on the specific use case, such as prioritizing 
accurate predictions (SVD) or higher relevance in 
recommendations (KNN). 

During the model evaluation, the Python logging library is 
employed to track and store detailed information about the 
progress and results of the model tuning, listing dataset 
version, timestamp, model version and performance metrics, 
which allow for thorough analysis of previous and current 
versions of the model (Example given on Fig. 9.). 

 

Fig. 9. Model version analysis 

This enables a clear comparison of current and past 
models, facilitating informed decisions about the best-
performing model for deployment. 

IV. SIMILAR RESEARCH 

Our work proposes a unified workflow for training and 
offline evaluation of recommendation systems, focusing on 
reproducibility and standardized evaluation. This aligns with 
two key frameworks in the field: FEVR [9] and Elliot [10]. 

The FEVR framework organizes evaluation processes by 
categorizing facets like evaluation goals, methods, and 
metrics. While similar in its emphasis on comprehensive 
evaluation, our work provides a more practical, executable 
framework, integrating data preprocessing, model training, 
and metric computation into a unified process, making it 
easier to compare recommendation algorithms. 

The Elliot framework standardizes the entire evaluation 
pipeline, including hyperparameter optimization and 
statistical analysis. While Elliot offers more flexibility with a 
wide range of data processing strategies and metrics, our 
approach focuses on simplicity, providing a streamlined and 
easily reproducible workflow.  

While both FEVR and Elliot contribute significantly to the 
evaluation landscape, our research provides a focused, user 
and beginner-friendly workflow that prioritizes clarity, ease of 
use, and reproducibility. 

V. CONCLUSION 

The workflow employed in this experiment significantly 
streamlined the process of training and offline evaluation of a 
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recommendation system, transforming it into a more efficient, 
systematic, and transparent procedure. By adhering to a well-
defined sequence of four core steps—Data Preparation, Model 
Training, Hyperparameter Optimization, and Metric 
Computation—we were able to methodically optimize two 
models for performance and rigorously evaluate their 
predictive capabilities. Each step played a pivotal role in 
ensuring models' effectiveness, from preprocessing the data to 
the final assessment of their performance on unseen test data. 

Together, these four steps created a comprehensive and 
structured framework for training and offline evaluation of a 
recommendation system. By following this workflow, we 
were able to optimize the models for performance, ensure that 
they were robustly evaluated, and produce a recommendation 
system that is capable of making reliable predictions. The 
methodology is not only valuable for this specific experiment 
but also serves as a solid foundation for future research in 
recommendation systems, providing a clear, reproducible 
process for building models and evaluating their effectiveness. 
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