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Abstract—We propose a novel machine-learning method to
predict seizure development in neonates with hypoxic-ischemic
encephalopathy using a Support Vector Machines classifier.
The method leverages a minimal feature set, comprising two
features extracted from the first 12 hours of single-channel
EEG recordings, spectral flatness and spectral entropy, and
two early clinical parameters collected in the hospital condition.
Validation was conducted on a dataset of 63 EEG recordings from
neonates with HIE, all with a gestational age above 35 weeks.
The model’s performance was evaluated using the Matthews
correlation coefficient (MCC) and the area under the receiver
operating characteristic curve (AUC), achieving MCC 0.555
and AUC 0.83. These results demonstrate higher performance
compared to the current state-of-the-art model, which utilizes
clinical and quantitative EEG features.

Index Terms—machine learning, EEG, neonatal seizures, pre-
diction algorithm

I. INTRODUCTION

Seizures occur in approximately 1 to 5 per 1000 live
births [1], and represent one of the most common neurologic
conditions in neonatology. These seizures can have various un-
derlying causes, including hypoxic-ischemic encephalopathy
(HIE), a severe neurological condition resulting from oxygen
deprivation and reduced blood flow to the brain [2], [3]. It
is a leading cause of neonatal morbidity and mortality, often
resulting in long-term complications such as developmental
delays, cerebral palsy, and epilepsy [4]. The incidence of
HIE is estimated to range from 1.5 to 3 per 1,000 live
births in developed countries, with significantly higher rates
of 1.5 to 14.9 per 1,000 live births reported in low-income
countries [4], [5]. Therapeutic hypothermia is currently the
only recommended treatment for moderate to severe HIE. This
intervention has been shown to reduce the overall seizure

burden and improve long-term neurodevelopmental outcomes
[6]-[8].

To enhance outcomes for neonates with HIE, early iden-
tification and effective management of seizures are critical.
However, the gold standard for seizure diagnosis, continuous
video-EEG monitoring, is not widely accessible because it
requires expert personnel and specialized equipment [9]. To
address these limitations, the goal is to develop a machine
learning model capable of identifying infants at high risk of
developing seizures, utilizing the EEG monitoring equipment
already available in clinical environments. Early detection
would enable timely initiation of treatment, minimizing delays
and improving patient outcomes.

Over the years, significant efforts have been made to develop
models for neonatal seizure prediction, utilizing a variety of
clinical and physiological features. Early studies investigated
correlations between biochemical parameters such as umbilical
artery pH, bicarbonate, and PO,, and neonatal outcomes like
mortality, HIE, and respiratory distress syndrome [10]. Some
models integrate clinical parameters like the 5 minute Apgar
score, delivery room intubation, and biochemical measures
such as pH, often in combination with EEG background anal-
ysis [11]. In recent years, machine learning (ML) techniques
have enabled the creation of more advanced decision-support
tools, offering significant potential in healthcare to assist
professionals with early detection and intervention [12], [13].
The proposed ML models utilize quantitative and qualitative
EEG features, either alone or in combination with clinical
parameters [9]-[11], [14], [15], to predict neonates at a higher
risk of developing seizures. The authors in [9], [16] have
also explored replacing EEG with amplitude-integrated EEG
(aEEQG), a simplified trend-monitoring tool that displays one
or two channels of processed, time-compressed EEG on a
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semilogarithmic scale [17]. Despite potential benefits, there
are still many unanswered questions prior to implementation
of these techniques into routine clinical practice.

This study aims to develop a ML model for early prediction
of neonates with HIE who later develop seizures, utilizing
the first 12 h of EEG recordings alongside selected clinical
parameters.

II. DATASET

In this study the dataset utilized consists of single-channel
EEG signals recorded from neonates diagnosed with HIE. The
recordings were obtained using the Olympic Medical CFM
6000 device (Natus Medical Incorporated, 5900 First Avenue
South, Seattle, WA 98108, USA) between January 2021 and
October 2024 in the Neonatal Intensive Care Unit of the
Institute for Child and Youth Health Care of Vojvodina, Novi
Sad, Serbia. EEG signals were acquired from parietal electrode
locations P3 and P4, with a sampling rate of 200 Hz.

Neonates included in the study were diagnosed with mod-
erate to severe HIE and eligible for therapeutic hypothermia.
All neonates had a gestational age above 35 weeks, and only
those with EEG recordings of a minimum duration of 12 hours,
initiated within the first 6 hours of life, were selected.

The study population consisted of 63 neonates, divided into
two groups based on the presence and frequency of neonatal
seizures observed after the first 12 hours of EEG recordings.
The first group included neonates who experienced no seizures
or a single seizure episode, while the second group consisted
of those with more than one seizure episode. The annotations
were performed by two medical experts.

The clinical and biochemical data covered the mode of
delivery, the neonate’s gender, birth weight (BW), gestational
age (GA), Apgar scores at first minute, Apgar score at fifth
minute, assisted ventilation, pH, cardiopulmonary resuscitation
in the delivery room (CPR), standard bicarbonate (stHCOs3),
lactates, base excess, glycemia, and age at the time of onset
of seizures.

For the analysis, 12 hours of single-channel EEG recordings
were extracted for each neonate. These recordings under-
went quantitative analysis to identify patterns associated with
seizure activity.

III. PROPOSED METHOD

The study proposes a model designed to identify neonates
with HIE who are at risk of developing more than one
seizure episode after the first 12 hours of EEG recording. The
objective is to detect this particularly vulnerable subgroup by
combining clinical data with quantitative EEG features. From
the available clinical variables in the dataset, two features were
selected for inclusion: standard bicarbonate levels and the need
for cardiopulmonary resuscitation in the delivery room. To
enhance model performance and ensure comparability, these
clinical features were standardized to have a mean of zero
and a standard deviation of one. In addition to the clinical
variables, the model also utilizes quantitative features derived
from the EEG recordings, integrating them for a comprehen-
sive analysis.

A. Quantitative-EEG Features Extraction

Quantitative-EEG analysis included extracting different fea-
tures that describe time and frequency characteristics of EEG
signal. Two features used for model development are spectral
flatness and spectral entropy, both of which were calculated
based on the Power Spectral Density (PSD). Prior to feature
extraction, the EEG signal underwent preprocessing to prepare
it for analysis. Firstly, the original signal, sampled at 200 Hz,
was bandpass filtered to remove noise and irrelevant activity.
As in [18], a bandpass filter with a range of 0.5 to 30 Hz
was applied to eliminate the 50 Hz power-line interference
and reduce frequencies below 0.5 Hz, which are typically
associated with artifacts such as DC drift and sweat-related
interference. This bandpass filtering step also served as an
anti-aliasing filter, crucial for preventing aliasing during the
subsequent downsampling to 64 Hz. After bandpass filtering,
the signal was downsampled to 64 Hz, reducing computational
complexity and storage requirements while preserving the
essential characteristics for further analysis [19].

The PSD represents the distribution of signal power across
different frequencies, and in this case, it was estimated using
Welch’s method, a widely used technique for spectral estima-
tion. This method divides signal into overlapping segments,
computes the periodogram for each segment, and averages
these periodograms to obtain a more stable estimate of the
power spectrum. The parameters for the Welch method used
on EEG signals were as follows: a Hamming window was
applied to minimize spectral leakage, the EEG signal segment
length was 8 x fs (sampling frequency), corresponding to 8
seconds of signal, and 75% overlap between segments was
used to enhance the smoothness of the estimate. The equation
for the PSD estimated using the Welch method is given by:

N- M- 2
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where ., is the segment of the signal for which the Fourier
transform is calculated, w,, is the window function (in this
case Hamming) applied to each segment, M is the length of
the segment, IV is the number of segments, and f is frequency.

Spectral entropy quantifies the degree of randomness or
complexity in a signal and it was computed using the normal-
ized PSD, denoted as pweicn(f), which represents the proba-
bility distribution of the energy across different frequencies.
The method used calculates the Shannon entropy for the PSD,
following the equation:

N

H(p) = = pweten(fi) 10g pweien (i) 2

=0

where pweien(f;) is the normalized value of the PSD at
frequency f; [20].

Spectral flatness, also known as Wiener entropy, measures
how flat or noise-like a signal spectrum is [20]. It is calculated
using the PSD, specifically through the geometric mean and
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the arithmetic mean of the PSD. The arithmetic mean repre-
sents the average power level of the signal, while geometric
provides a measure of central tendency. The spectral flatness
S is then determined by the ratio of the geometric mean to the
arithmetic mean, calculated as follows:

exXp (% Zszl 10g PWelch(fi))
s = = 3)
K Zi:l P (f z)
where Pyweicn(f;) is the PSD at frequency f;, and K is the
number of frequency bins.

B. Machine Learning (ML) Classifier

Developed ML model uses both clinical and quantitative-
EEG features to predict neonates with HIE who experienced
more than one seizure after the first 12 hours of EEG
recording. Among the models evaluated, including Random
Forest [21], Adaptive Boosting [22], and Logistic Regression
[23], the Support Vector Machine (SVM) [24] demonstrated
superior performance. Given the limited dataset, consisting
of only 63 signals, a leave-one-out cross-validation approach
was employed to maximize the use of available data. Model
hyperparameters were optimized through a grid search within
a nested 10-fold cross-validation.

C. Model Evaluation

In this study, the dataset is highly imbalanced, comprising
a total of 63 EEG time series, of which 45 correspond to
class 1 (neonates with HIE who develop a single seizure
or no seizures), while 18 represent class 2 (neonates who
experience more than one seizure). To address this class
imbalance, the performance of the ML models was evaluated
using the Matthews correlation coefficient (MCC) [25], which
is well-suited for imbalanced datasets. In addition to MCC,
other standard performance metrics were reported, including
the area under the receiver operating characteristic curve
(AUC), sensitivity, specificity, positive predictive value (PPV),
and negative predictive value (NPV). Performance for binary
classification is calculated by using the following expressions:

MCOC — TP-TN—FP-FN (4)
\/(TP+FP)(TP+FN)(TN+FP)(TN+FN)

Sensitivity = TPf:—iPFN )]

Specificity = FPjis—iNTN (6)

PPV = )

NPV = ®)

where TP represent true positives, TN true negatives, FP
false positives and FN false negatives. TP corresponds to HIE
infants who later develop seizures.

IV. RESULTS

In this section, we evaluate the proposed method and
compare its performance to the current state-of-the-art model,
which utilizes continuous multichannel EEG data along with
clinical features for prediction [9]. The reference study ex-
plored several models differing in the type of features em-
ployed. Among these, the highest performance was achieved
by the model integrating clinical and quantitative EEG fea-
tures, reporting a MCC of 0.513 and an AUC of 0.746. This
model is selected as the benchmark because it uses clinical
and quantitative-EEG features, aligning with the features used
in the proposed model.

The performances of the proposed and benchmark model
are shown in Table 1. The proposed model employs a total
of 4 features, 2 clinical and 2 quantitative-EEG features. On
the other hand, the benchmark model utilizes 41 features,
13 clinical and 28 quantitative-EEG features. Notably, the
proposed approach outperforms the benchmark model across
almost all evaluation metrics.

However, direct comparisons between the proposed model
and the benchmark model are constrained by differences in
dataset size and EEG configuration. While the benchmark
model utilized multichannel EEG data, our approach is based
on single-channel EEG recordings. To address this limitation,
we conducted an additional comparison with our previous
work [16], which employed the same dataset as the pro-
posed method did, but used amplitude-integrated EEG (aEEG)
instead of raw single-channel EEG. The transformation of
single-channel EEG into aEEG involved filtering, rectification,
smoothing, and amplitude integration, as described in [26].
Additionally, Table 1 includes the performance metrics of the
approach presented in [16]. Once again, the proposed model
demonstrates improvement in most of the evaluation metrics
compared to this approach.

V. CONCLUSION

In summary, the proposed clinical and quantitative-EEG
model for predicting neonates with HIE who are at risk
of developing seizures demonstrates improvements compared
to previously reported models [9], [16]. It achieved higher
performance by using 4 features, 2 clinical and 2 quantitative
EEG features. A key limitation of this study, similar to
many others [9], [16], is the small dataset comprising only
63 neonates from the Institute for Child and Youth Health
Care of Vojvodina, Novi Sad, Serbia. Despite this limitation,
the proposed model represents a step forward in integrating
machine learning support tools into clinical practice, aiding in
the identification of vulnerable neonates with HIE.
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TABLE I
COMPARISON OF PERFORMANCES FOR DIFFERENT MODELS

ML model Number of infants | MCC | AUC | Sensitivity | Specificity | PPV | NPV

Clinical and quantitative - EEG # [9] 159 0.513 | 0.746 75.5 78.0 62.5 86.7

Clinical and quantitative - aEEG b [16] 47 0.495 | 0.758 60.0 87.5 69.2 82.3
Proposed method (clinical and quantitative EEG model) © 63 0.55 0.83 55.6 93.3 76.9 84.0

2EEG=multichannel EEG
baEEG=single channel EEG (P3-P4)
°EEG=single channel EEG
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