
23
rd

 International Symposium INFOTEH-JAHORINA, 20-22 March 2024

 - 320 -

Comparative Analysis of Decision Tree-Based

Algorithms for Detecting Anomalies in Web Traffic
Student paper

Veljko Lončarević*, Savo Šućurović**

Second cycle students

University of Kragujevac, Faculty of Technical Sciences

Čačak, Serbia

Email: *veljkoloncarevicharry@gmail.com, **savos977@gmail.com

Abstract— This research delves into the performance assessment

of decision tree-based machine learning algorithms—specifically

Decision Tree, Random Forest, XGBoost, LightGBM, and

CatBoost—in the context of anomaly detection in web traffic. The

study employs key metrics like accuracy, precision, recall, and F1

score, juxtaposed with the computational efficiency measured by

model training times. Notably, LightGBM demonstrates very

efficient training with competitive performance, while CatBoost,

despite longer training, outshines others in predictive accuracy.

Keywords- machine learning, decision tree, anomaly detection,

web traffic, comparative analysis, model training time

I. INTRODUCTION

Anomalous behavior refers to events that significantly
deviate from the expected or normal, withing a given context.
Such behavior often indicates unusual, potentially harmful or
noteworthy occurrences. Identifying anomalies in web traffic
helps in detection of security threats, such as hacking attempts,
unauthorized access, fraudulent transactions, issues related to
the performance and health of the web application, potential
service disruptions or distributed denial-of-service (DDoS)
attacks. Monitoring for anomalies is crucial for preventing
financial losses, ensuring the availability of web applications,
and mitigating potential risks, as well as protecting the web
application and its users. It is also often necessary for
compliance with privacy and security regulations. When it
comes to anomaly detection in general, finance, healthcare and
e-commerce are an example of sectors where monitoring and
protecting sensitive data is particularly important [1, 2].

There is a large variety of detection methods being applied
in different industries, some of which are statistical methods,
rule-based systems, classification and clustering machine
learning algorithms, and neural networks. Machine learning
algorithms enable automated identifying of patterns in complex
datasets. They can be adapted and evolve over time based on
new data, which can be of great benefit in dynamic
environments where new patterns may emerge. They also
allow analysis of complex, multidimensional relationships in
data, where even subtle differences or anomalies can be
captured, whereas the same might be more difficult for
traditional systems based on rules. The objective of this paper

is to compare the efficacy and accuracy of various decision
tree-based machine learning classification algorithms,
including decision trees, random forests, and gradient boosting.
Machine learning algorithms will be trained on a dataset
gathered from web server log files and user behavior data. The
primary metrics to be assessed in this study encompass the
training time required for machine learning models, as well as
key classification accuracy metrics, including accuracy,
precision, recall, and F1 score, which are to be compared at the
end.

II. THEORETICAL FOUNDATIONS

A. Decision Trees

Decision tree is a machine learning algorithm used for both
classification and regression tasks. The general idea behind the
algorithm is to recursively split the dataset based on the
features, making decisions at each node to arrive at a final
outcome. In the beginning, the algorithm considers the entire
dataset, and selects the feature that best separates the data into
distinct group. This feature becomes the root node of the tree.
The dataset is split into subsets based on the chosen feature,
and the process is repeated for each subset. At each step, the
algorithm selects the feature that best separates the data in the
current subset. The decision at each node is based on a
criterion, usually by calculating the Gini impurity for
classification tasks [3]. The process continues until a stopping
criterion is met, such as a predefined depth of the tree or a
minimum number of samples in a node. The final nodes are
called leaf nodes, and they represent the prediction. For
classification tasks, the majority class in a leaf node is assigned
as the predicted class. Gini impurity quantifies the likelihood of
misclassifying an element in a set chosen randomly. It is
calculated in the following way:

 𝑓(𝑝) = 1 − ∑ 𝑝𝑖2𝐶𝑖=1 (1)

where C is the number of classes and pi is the probability of
an element of class i in the node being chosen randomly. Gini
impurity ranges between 0 and 1, where 0 represents perfect
purity (all elements in the node belong to the same class), and 1
represents maximum impurity (an equal distribution of
elements across all classes). One common issue decision trees

mailto:*veljkoloncarevicharry@gmail.com
mailto:**savos977@gmail.com

 - 321 -

face is overfitting, where a model captures noise or random
fluctuations that do not generalize well to new, unseen data.
Decision trees can become overly complex, creating nodes that
are tailored to the training data's peculiarities, instead of
capturing the underlying patterns. Such models tend to perform
poorly on new data. A technique often used to mitigate
overfitting in decision trees is pruning, which involves
removing parts of the tree that provide no significant predictive
power. Pruning includes setting a stopping criterion before the
tree is fully grown, such as maximum depth for the tree,
minimum number of samples required to split a node or a
minimum number of samples in a leaf node. If a node does not
meet these criteria, it is not split further. Due to the way they
work, decision trees are highly interpretable, they can model
non-linear relationships in the data, automatically select most
informative features at each node, and are robust to outliers by
isolating them in separate nodes. Decision trees can handle
both numerical and categorical data, without the need for
feature scaling. Decision trees automatically handle missing
values by evaluating the available data and choosing the best
split based on the information present, without the need for
imputing missing values. They can also create separate
branches for missing data. Decision trees can be part of
ensemble methods like Random forests and Gradient boosting,
which can improve predictive performance and mitigate
overfitting.

B. Random Forests

Random forest is an ensemble method that builds multiple
decision trees during training and outputs the mode of the
classes in classification tasks. It introduces randomness in the
tree-building process, which makes it more robust and less
prone to overfitting compared to individual decision trees. It
builds multiple trees using a technique called bootstrapped
sampling, where multiple subsets of the original dataset are
created by sampling with replacement, after which each tree is
trained on one of these subsets. Random forest introduces
randomness by considering only a random subset of features
for splitting, which helps with tree decorrelation and makes
sure that each tree focuses on different aspects of the dataset.
For classification tasks, the final prediction is determined by a
majority vote from the individual trees. The ensemble nature of
the method helps generalize well to new data. Building each
tree in a Random forest is done independently, which is
suitable for parallelization, helping with algorithm scaling and
increasing efficiency, particularly with large datasets.

C. Gradient Boosted Trees

Gradient Boosted Trees (GBT) is an ensemble method that
combines predictions of multiple decision trees to create a
strong predictive model [4]. Unlike Random forests, which
build multiple trees independently, GBT builds trees
sequentially and corrects errors made by the preceding ones, in
an iterative process that minimizes a loss function by adding
trees to the ensemble. It starts with a simple model, often a
single decision tree referred to as a "weak learner". This initial
weak learner is fitted to the data. The next weak learner is
added to correct the errors made by the first one. The algorithm
pays more attention to the instances that were misclassified or
had higher residuals in the previous iteration. This process is

repeated for a specified number of iterations or until a stopping
criterion is met. Each new weak learner is trained to minimize
the overall loss of the combined model. The final prediction is
a weighted sum of the predictions from all weak learners. The
weights are determined during the training process. GBT often
achieves higher predictive accuracy compared to individual
decision trees and, in some cases, even Random forests.

D. Performance metrics

Accuracy score is used to evaluate the performance of a
classification model. It represents the ratio of correctly
predicted instances to the total instances in the dataset. It is
calculated using the formula

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠𝑇𝑜𝑡𝑎𝑙 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 . (2)

Accuracy score is expressed as a percentage ranging from
0% to 100%, where a higher percentage indicates better
performance. Although accuracy score can be useful, it still has
some limitations, especially in situations where classes are
imbalanced (where one class significantly outnumber the
others). In such a case, a model can achieve high accuracy
score by simply predicting the majority class, even if it
performs poorly on the minority classes. Precision, denoted as
the ratio of true positive predictions (correctly predicted
positive values) to the total predicted positives (correctly and
incorrectly predicted positive values), is especially valuable in
scenarios where the cost of false positives is high. This
measure, represented by the formula

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃𝑇𝑃+𝐹𝑃, (3)

quantifies the accuracy of positive predictions. Here, TP stands
for the number of true positive predictions, and FP represents
the number of false positive predictions. Recall, on the other
hand, gauges the model's proficiency in capturing all positive
instances, and it becomes particularly pertinent when the cost
of false negatives is a significant concern. It is calculated using
the formula

 𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃𝑇𝑃+𝐹𝑁, (4)

where TP denotes the number of true positive predictions, and
FN signifies the number of false negative predictions. The F1
score, serving as the harmonic mean of precision and recall,
offers a balanced assessment of the model's performance,
especially in situations characterized by an uneven class
distribution [5]. Expressed by the formula

 𝐹1 = 2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙 , (5)

it provides a single metric that considers both precision and
recall. Implementations of Gradient boosting algorithms
include XGBoost, LightGBM and CatBoost. Extreme Gradient
Boosting (XGBoost) integrates regularization techniques to
prevent overfitting and parallel processing to speed up model
training. It supports various objective functions and custom
loss functions, making it highly versatile and applicable across
a wide range of tasks [6]. LightGBM, which was developed by
Microsoft, is renowned for its efficiency, utilizing a histogram-
based learning approach to construct decision trees. It uses a
technique called "Gradient-Based One-Side Sampling", which

 - 322 -

selects the optimal split points more efficiently, which makes
LightGBM particularly suitable for large datasets and high-
dimensional feature spaces [7]. CatBoost, developed by
Yandex, is another gradient boosting algorithm designed to
handle categorical features seamlessly. It employs a unique
strategy known as "ordered boosting", which reduces
overfitting by sorting categorical variables and incorporating
the information from the sorted order [8].

III. METHODOLOGY

The main goals of this research paper are as follows:

- Evaluate and compare the model training times of
different decision tree-based machine learning
algorithms.

- Assess and compare the accuracy performance of the
selected algorithms on a specific dataset.

In the course of this research, we gathered data from
author’s private website (www.veljkoloncarevic.in.rs),
spanning the period from September 2022 to August 2023. The
dataset comprises 18 columns, of which the target column is
“Anomalous”. The complete list of columns (features) is given
in Table I. With approximately 15,000 rows of data, our dataset
provides a substantial and representative sample of the web
traffic recorded during the specified time frame.

TABLE I. LIST OF COLLECTED FEATURES

Feature # Feature

1. IP address 10. Total Requests

2. Timestamp 11. Location

3. Browser 12. City

4. Operating System (OS) 13. Country

5. Requests Per Second (RPS) 14. Longitude

6. HTTP Status Code 15. Latitude

7. Session Duration 16. Device Type

8. Payload Size 17. Language

9. URL Length 18. Anomalous

An example of the first instance from the dataset is given in
Table II, without the potentially identifying information (like
IP address, location, longitude and latitude).

The dataset is not publicly available due to privacy
considerations and restrictions, in order to preserve the
confidentiality of the individuals or entities associated with this
data. However, authors of this paper are willing to address any
reasonable requests for information that do not compromise the
privacy and confidentiality of the individuals or entities
involved. For all inquiries, contact Veljko Lončarević at
veljkoloncarevicharry@gmail.com.

Features were preprocessed by using a variety of
preprocessing techniques. Missing values were replaced with
the median value for numerical columns, and the most frequent
occurrence for categorical values. Numerical features were

scaled using the MinMax scaler technique. Categorical features
with less than or equal to five unique values were encoded
using One-Hot encoding method, while others were encoded
using Target encoding. Target column (Anomalous) was
encoded using binary encoding. The following machine
learning algorithms were trained on the dataset (using default
parameters):

- Decision Tree,

- Random Forest,

- XGBoost,

- LightGBM,

- CatBoost.

TABLE II. FIRST INSTANCE TROM THE DATASET (ANONYMIZED)

Feature Value Feature Value

Timestamp 2023-05-12
12:20

URL Length 61

Browser Chrome 113.0.0 City Belgrade

OS Windows 10 Country Serbia

Requests Per
Second

1.27 Device Type PC

HTTP Status
Code

200 Language EN

Session
Duration

32 Anomalous False

Payload Size 533 Total Requests 5

Prior to training the models, dataset was separated into
different train and test splits using the ShuffleSplit
technique, after which the models were trained on the train
splits, and tested with the test splits, using the cross-
validation technique. Test results of each of the
performance metrics (Accuracy, precision, recall, F1 score)
and time to train each model were recorded and compared.
For this analysis, Python programming language was used,
with Pandas and NumPy libraries for data handling,
matplotlib for result visualization, scikit-learn, XGBoost,
LightGBM and CatBoost libraries for their
implementations of the necessary decision tree-based
algorithms.

IV. RESULTS AND DISCUSSION

A. Results

Fig. 1 shows the time it took to train a specific model on the
dataset using methods described in the previous chapter. The
test results for the time required to train various machine
learning models reveal significant differences in computational
efficiency. Notably, the Decision Tree exhibited the shortest
training time at 1.52 seconds, indicating its rapid model
building process. LightGBM followed with a still efficient 4.77
seconds, emphasizing its scalability and speed, especially
suitable for large datasets. The Random Forest, while providing

http://www.veljkoloncarevic.in.rs/
mailto:veljkoloncarevicharry@gmail.com

 - 323 -

robust ensemble learning, took 16.20 seconds, signifying a
longer training duration compared to individual decision trees.
XGBoost demonstrated a longer training time of 31.95
seconds, highlighting the computational resources required for
its sophisticated gradient boosting algorithm. Notably,
CatBoost exhibited the longest training time among the tested
models at 164.08 seconds, underscoring its thorough
optimization process and potentially resource-intensive nature.

Figure 1. Comparison of Model Train Time

Table III shows the comparison between performance
metrics of different machine learning algorithms used in this
analysis.

TABLE III. PERFORMANCE METRICS RESULTS

Algorithm Accuracy Precision Recall F1 Score

Decision
Tree

82% 78% 85% 81%

Random
Forest

89% 93% 86% 89%

XGBoost 96% 94% 94% 94%

LightGBM 95% 96% 94% 95%

CatBoost 97% 98% 98% 98%

The test results of various machine learning algorithms
demonstrate distinct performance metrics across accuracy,
precision, recall, and F1 score. Notably, CatBoost achieved the
highest accuracy at 97%, closely followed by XGBoost at 96%,
indicating their effectiveness in overall prediction accuracy. In
terms of precision, CatBoost also excelled with a value of 98%,
suggesting a small false positive rate. XGBoost, Random
Forest, and LightGBM exhibited competitive precision values,
emphasizing their ability to make accurate positive predictions.
When assessing recall, CatBoost also led with a value of 98%,
signifying its capacity to capture a high proportion of actual

positive instances. Random Forest demonstrated slightly lower
recall value, while XGBoost and LightGBM remained strong
in this metric. F1 score, which balances precision and recall,
showcased the overall model performance, with CatBoost
leading at 98%, closely trailed by XGBoost and LightGBM at
94% and 95%, respectively.

B. Discussion

The comparison between the performance metrics test
results of machine learning algorithms and their corresponding
training times sheds light on the trade-offs between model
performance and computational efficiency. Notably, the
Decision Tree, despite having the shortest training time at 1.52
seconds, demonstrated a lower performance across accuracy,
precision, recall, and F1 score, suggesting its inability to
capture more complex relationships in the dataset. On the other
end of the spectrum, CatBoost, with the longest training time of
164.08 seconds, exhibited superior predictive performance
across all metrics, including the highest accuracy, precision,
recall, and F1 score. This indicates that the computational
resources invested in training CatBoost were justified by its
outstanding predictive capabilities. The time to train models
results align with expectations, where the more complex
algorithms, such as XGBoost and CatBoost, requiring more
substantial training times, demonstrated strong predictive
performance. XGBoost, with a training time of 31.95 seconds,
achieved competitive results across all metrics, striking a
balance between training efficiency and model accuracy.
Random Forest, while showing commendable performance,
necessitated a more moderate training time compared to
CatBoost, emphasizing the versatility of ensemble methods.
LightGBM, with a training time of 4.77 seconds, offered an
appealing compromise between computational efficiency and
model effectiveness, achieving respectable scores across
accuracy, precision, recall, and F1 score. The training time for
LightGBM is notably shorter than that of CatBoost,
demonstrating its efficiency in handling large datasets while
maintaining strong predictive capabilities. In instances where
paramount emphasis is placed on computational efficiency, the
outcomes of this experiment advocate for the adoption of
LightGBM. Conversely, when the primary imperative is
superior predictive accuracy, the findings strongly advocate the
utilization of CatBoost.

C. Comparison with Related Research

While existing research papers, such as [9] and [10], have
presented compelling results in training machine learning
models for anomaly detection in web traffic, this study
contributes to the growing body of knowledge by corroborating
and extending these findings. Our experiments align closely
with the outcomes reported by [9], which demonstrated the
efficacy of an XGBoost ensemble of deep neural networks in
achieving a maximum accuracy of 99.5%, coupled with 98%
precision and 97% recall. This not only reaffirms the
robustness of such ensemble techniques but also establishes a
consistent performance baseline across multiple studies.
Moreover, our results bear resemblance to those reported in
[10], where the authors introduced a novel SVM-C method and
achieved accuracy levels ranging from 94% to 97% on diverse
datasets. Our contributions lie in the replication and validation

 - 324 -

of these results in the context of our experimental setup,
thereby reinforcing the generalizability and reliability of these
anomaly detection methodologies. Looking ahead, there are
promising avenues for future work in this domain. One
potential direction involves exploring the adaptability and
scalability of the identified anomaly detection methods to
diverse network architectures and traffic patterns. Additionally,
investigating the impact of evolving cyber threats and attacks
on the performance of these models could contribute to
enhancing their robustness. Furthermore, the integration of
advanced deep learning techniques or the exploration of
ensemble methods combining various algorithms may unveil
novel approaches for even more accurate and resilient anomaly
detection systems. These future endeavors aim to refine and
extend the current understanding of anomaly detection in web
traffic, addressing emerging challenges and optimizing model
performance across different real-world scenarios.

V. CONCLUSION

The juxtaposition of performance metrics and training
times for diverse machine learning algorithms provides
valuable insights into the intricate trade-offs between model
efficiency and predictive accuracy. The Decision Tree, despite
its swift training time of 1.52 seconds, exhibited inferior
performance metrics, suggesting limitations in capturing
intricate dataset relationships. Conversely, CatBoost, with the
longest training time of 164.08 seconds, showcased
unparalleled predictive capabilities, justifying the
computational investment. As anticipated, more complex
algorithms like XGBoost and CatBoost, demanding extended
training times, demonstrated robust predictive performance.
XGBoost, with a balanced 31.95 second training time, emerged
as an efficient compromise between speed and accuracy.
Random Forest displayed commendable performance with a
moderate training time, emphasizing the versatility of ensemble
methods. LightGBM, with a brief 4.77 second training time,
struck an appealing balance between computational efficiency
and model effectiveness. In scenarios prioritizing
computational efficiency, LightGBM emerges as a favored
choice, while CatBoost stands out for superior predictive
accuracy. This research contributes to the broader field by
reaffirming and extending findings from previous studies ([9],
[10]). The results align with [9], validating the efficacy of an
XGBoost ensemble of deep neural networks. Our findings also
resonate with [10], where the SVM-C method achieved
accuracy levels of 94% to 97%. Our contribution lies in
replicating and validating these results within our experimental

context, reinforcing the reliability and generalizability of
anomaly detection methodologies.

Looking ahead, future research could explore the
adaptability of anomaly detection methods across diverse
network architectures and evolving cyber threats. Investigating
the integration of advanced deep learning techniques and
ensemble methods may uncover novel approaches, enhancing
accuracy and resilience in anomaly detection systems. These
endeavors aim to refine the understanding of anomaly detection
in web traffic, addressing emerging challenges and optimizing
model performance across varied real-world scenarios.

REFERENCES

[1] A. Ukil, S. Bandyoapdhyay, C. Puri and A. Pal, "IoT Healthcare

Analytics: The Importance of Anomaly Detection," 2016 IEEE 30th

International Conference on Advanced Information Networking and

Applications (AINA), Crans-Montana, Switzerland, 2016, pp. 994-997,
doi: 10.1109/AINA.2016.158.

[2] W. Hilal, S. A. Gadsden and J. Yawney, "Financial Fraud: A Review of
Anomaly Detection Techniques and Recent Advances," in Expert

Systems with Applications, vol. 193, 2022, 116429, ISSN 0957-4174,
https://doi.org/10.1016/j.eswa.2021.116429.

[3] R. Quinlan, "Induction of Decision Trees," Machine Learning, vol. 1,
no. 1, pp. 81–106, 1986.

[4] J. H. Friedman, "Greedy function approximation: A gradient boosting
machine," Annals of Statistics, vol. 29, no. 5, pp. 1189-1232, Oct. 2001.
DOI: 10.1214/aos/1013203451.

[5] C. Goutte and E. Gaussier, "A Probabilistic Interpretation of Precision,
Recall and F-Score, with Implication for Evaluation," in Proceedings of

the 27th European Conference on Advances in Information Retrieval

Research, Apr. 2005, Lecture Notes in Computer Science, vol. 3408, pp.
345-359, DOI: 10.1007/978-3-540-31865-1_25.

[6] T. Chen and C. Guestrin, "XGBoost: A Scalable Tree Boosting System,"
in Proceedings of the 22nd ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining (KDD), Aug. 2016. DOI:
10.1145/2939672.2939785

[7] G. Ke et al., "LightGBM: A Highly Efficient Gradient Boosting
Decision Tree," in Advances in Neural Information Processing Systems
(NeurIPS), 2017.

[8] S. I. Nikolenko et al., "CatBoost: unbiased boosting with categorical
features," in Proceedings of the 32nd International Conference on
Neural Information Processing Systems (NeurIPS), 2018.

[9] S. T. Ikram et al., "Anomaly Detection Using XGBoost Ensemble of
Deep Neural Network Models," Cybernetics and Information

Technologies, vol. 21, no. 3, Sofia, 2021, pp. 1-15. DOI: 10.2478/cait-
2021-0037.

[10] M. Karuppiah, Q. Ma, C. Sun, and B. Cui, "A Novel Model for
Anomaly Detection in Network Traffic Based on Support Vector
Machine and Clustering," Security and Communication Networks, vol.
2021, pp. 2170788, Nov. 20, 2021. DOI: 10.1155/2021/2170788.

	I. Introduction
	II. Theoretical Foundations
	A. Decision Trees
	B. Random Forests
	C. Gradient Boosted Trees
	D. Performance metrics

	III. Methodology
	IV. Results and Discussion
	A. Results
	B. Discussion
	C. Comparison with Related Research

	V. Conclusion
	References

