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Abstract— This research delves into the performance assessment 

of decision tree-based machine learning algorithms—specifically 

Decision Tree, Random Forest, XGBoost, LightGBM, and 

CatBoost—in the context of anomaly detection in web traffic. The 

study employs key metrics like accuracy, precision, recall, and F1 

score, juxtaposed with the computational efficiency measured by 

model training times. Notably, LightGBM demonstrates very 

efficient training with competitive performance, while CatBoost, 

despite longer training, outshines others in predictive accuracy. 
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I.  INTRODUCTION 

Anomalous behavior refers to events that significantly 
deviate from the expected or normal, withing a given context. 
Such behavior often indicates unusual, potentially harmful or 
noteworthy occurrences. Identifying anomalies in web traffic 
helps in detection of security threats, such as hacking attempts, 
unauthorized access, fraudulent transactions, issues related to 
the performance and health of the web application, potential 
service disruptions or distributed denial-of-service (DDoS) 
attacks. Monitoring for anomalies is crucial for preventing 
financial losses, ensuring the availability of web applications, 
and mitigating potential risks, as well as protecting the web 
application and its users. It is also often necessary for 
compliance with privacy and security regulations. When it 
comes to anomaly detection in general, finance, healthcare and 
e-commerce are an example of sectors where monitoring and 
protecting sensitive data is particularly important [1, 2].  

There is a large variety of detection methods being applied 
in different industries, some of which are statistical methods, 
rule-based systems, classification and clustering machine 
learning algorithms, and neural networks. Machine learning 
algorithms enable automated identifying of patterns in complex 
datasets. They can be adapted and evolve over time based on 
new data, which can be of great benefit in dynamic 
environments where new patterns may emerge. They also 
allow analysis of complex, multidimensional relationships in 
data, where even subtle differences or anomalies can be 
captured, whereas the same might be more difficult for 
traditional systems based on rules. The objective of this paper 

is to compare the efficacy and accuracy of various decision 
tree-based machine learning classification algorithms, 
including decision trees, random forests, and gradient boosting. 
Machine learning algorithms will be trained on a dataset 
gathered from web server log files and user behavior data. The 
primary metrics to be assessed in this study encompass the 
training time required for machine learning models, as well as 
key classification accuracy metrics, including accuracy, 
precision, recall, and F1 score, which are to be compared at the 
end.  

II. THEORETICAL FOUNDATIONS 

A. Decision Trees 

Decision tree is a machine learning algorithm used for both 
classification and regression tasks. The general idea behind the 
algorithm is to recursively split the dataset based on the 
features, making decisions at each node to arrive at a final 
outcome. In the beginning, the algorithm considers the entire 
dataset, and selects the feature that best separates the data into 
distinct group. This feature becomes the root node of the tree. 
The dataset is split into subsets based on the chosen feature, 
and the process is repeated for each subset. At each step, the 
algorithm selects the feature that best separates the data in the 
current subset. The decision at each node is based on a 
criterion, usually by calculating the Gini impurity for 
classification tasks [3]. The process continues until a stopping 
criterion is met, such as a predefined depth of the tree or a 
minimum number of samples in a node. The final nodes are 
called leaf nodes, and they represent the prediction. For 
classification tasks, the majority class in a leaf node is assigned 
as the predicted class. Gini impurity quantifies the likelihood of 
misclassifying an element in a set chosen randomly. It is 
calculated in the following way: 

 𝑓(𝑝) = 1 − ∑ 𝑝𝑖2𝐶𝑖=1  (1) 

where C is the number of classes and pi is the probability of 
an element of class i in the node being chosen randomly. Gini 
impurity ranges between 0 and 1, where 0 represents perfect 
purity (all elements in the node belong to the same class), and 1 
represents maximum impurity (an equal distribution of 
elements across all classes). One common issue decision trees 
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face is overfitting, where a model captures noise or random 
fluctuations that do not generalize well to new, unseen data. 
Decision trees can become overly complex, creating nodes that 
are tailored to the training data's peculiarities, instead of 
capturing the underlying patterns. Such models tend to perform 
poorly on new data. A technique often used to mitigate 
overfitting in decision trees is pruning, which involves 
removing parts of the tree that provide no significant predictive 
power. Pruning includes setting a stopping criterion before the 
tree is fully grown, such as maximum depth for the tree, 
minimum number of samples required to split a node or a 
minimum number of samples in a leaf node. If a node does not 
meet these criteria, it is not split further. Due to the way they 
work, decision trees are highly interpretable, they can model 
non-linear relationships in the data, automatically select most 
informative features at each node, and are robust to outliers by 
isolating them in separate nodes. Decision trees can handle 
both numerical and categorical data, without the need for 
feature scaling. Decision trees automatically handle missing 
values by evaluating the available data and choosing the best 
split based on the information present, without the need for 
imputing missing values. They can also create separate 
branches for missing data. Decision trees can be part of 
ensemble methods like Random forests and Gradient boosting, 
which can improve predictive performance and mitigate 
overfitting. 

B. Random Forests 

Random forest is an ensemble method that builds multiple 
decision trees during training and outputs the mode of the 
classes in classification tasks. It introduces randomness in the 
tree-building process, which makes it more robust and less 
prone to overfitting compared to individual decision trees. It 
builds multiple trees using a technique called bootstrapped 
sampling, where multiple subsets of the original dataset are 
created by sampling with replacement, after which each tree is 
trained on one of these subsets. Random forest introduces 
randomness by considering only a random subset of features 
for splitting, which helps with tree decorrelation and makes 
sure that each tree focuses on different aspects of the dataset. 
For classification tasks, the final prediction is determined by a 
majority vote from the individual trees. The ensemble nature of 
the method helps generalize well to new data. Building each 
tree in a Random forest is done independently, which is 
suitable for parallelization, helping with algorithm scaling and 
increasing efficiency, particularly with large datasets. 

C. Gradient Boosted Trees 

Gradient Boosted Trees (GBT) is an ensemble method that 
combines predictions of multiple decision trees to create a 
strong predictive model [4]. Unlike Random forests, which 
build multiple trees independently, GBT builds trees 
sequentially and corrects errors made by the preceding ones, in 
an iterative process that minimizes a loss function by adding 
trees to the ensemble. It starts with a simple model, often a 
single decision tree referred to as a "weak learner". This initial 
weak learner is fitted to the data. The next weak learner is 
added to correct the errors made by the first one. The algorithm 
pays more attention to the instances that were misclassified or 
had higher residuals in the previous iteration. This process is 

repeated for a specified number of iterations or until a stopping 
criterion is met. Each new weak learner is trained to minimize 
the overall loss of the combined model. The final prediction is 
a weighted sum of the predictions from all weak learners. The 
weights are determined during the training process. GBT often 
achieves higher predictive accuracy compared to individual 
decision trees and, in some cases, even Random forests.  

D. Performance metrics 

Accuracy score is used to evaluate the performance of a 
classification model. It represents the ratio of correctly 
predicted instances to the total instances in the dataset. It is 
calculated using the formula  

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠𝑇𝑜𝑡𝑎𝑙 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 . (2)  

Accuracy score is expressed as a percentage ranging from 
0% to 100%, where a higher percentage indicates better 
performance. Although accuracy score can be useful, it still has 
some limitations, especially in situations where classes are 
imbalanced (where one class significantly outnumber the 
others). In such a case, a model can achieve high accuracy 
score by simply predicting the majority class, even if it 
performs poorly on the minority classes. Precision, denoted as 
the ratio of true positive predictions (correctly predicted 
positive values) to the total predicted positives (correctly and 
incorrectly predicted positive values), is especially valuable in 
scenarios where the cost of false positives is high. This 
measure, represented by the formula  

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  𝑇𝑃𝑇𝑃+𝐹𝑃, (3)  

quantifies the accuracy of positive predictions. Here, TP stands 
for the number of true positive predictions, and FP represents 
the number of false positive predictions. Recall, on the other 
hand, gauges the model's proficiency in capturing all positive 
instances, and it becomes particularly pertinent when the cost 
of false negatives is a significant concern. It is calculated using 
the formula 

 𝑅𝑒𝑐𝑎𝑙𝑙 =  𝑇𝑃𝑇𝑃+𝐹𝑁,  (4) 

where TP denotes the number of true positive predictions, and 
FN signifies the number of false negative predictions. The F1 
score, serving as the harmonic mean of precision and recall, 
offers a balanced assessment of the model's performance, 
especially in situations characterized by an uneven class 
distribution [5]. Expressed by the formula  

 𝐹1 =  2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙 ,  (5)  

it provides a single metric that considers both precision and 
recall. Implementations of Gradient boosting algorithms 
include XGBoost, LightGBM and CatBoost. Extreme Gradient 
Boosting (XGBoost) integrates regularization techniques to 
prevent overfitting and parallel processing to speed up model 
training. It supports various objective functions and custom 
loss functions, making it highly versatile and applicable across 
a wide range of tasks [6]. LightGBM, which was developed by 
Microsoft, is renowned for its efficiency, utilizing a histogram-
based learning approach to construct decision trees. It uses a 
technique called "Gradient-Based One-Side Sampling", which 
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selects the optimal split points more efficiently, which makes 
LightGBM particularly suitable for large datasets and high-
dimensional feature spaces [7]. CatBoost, developed by 
Yandex, is another gradient boosting algorithm designed to 
handle categorical features seamlessly. It employs a unique 
strategy known as "ordered boosting", which reduces 
overfitting by sorting categorical variables and incorporating 
the information from the sorted order [8]. 

III. METHODOLOGY 

The main goals of this research paper are as follows: 

- Evaluate and compare the model training times of 
different decision tree-based machine learning 
algorithms. 

- Assess and compare the accuracy performance of the 
selected algorithms on a specific dataset. 

In the course of this research, we gathered data from 
author’s private website (www.veljkoloncarevic.in.rs), 
spanning the period from September 2022 to August 2023. The 
dataset comprises 18 columns, of which the target column is 
“Anomalous”. The complete list of columns (features) is given 
in Table I. With approximately 15,000 rows of data, our dataset 
provides a substantial and representative sample of the web 
traffic recorded during the specified time frame. 

TABLE I.  LIST OF COLLECTED FEATURES 

# Feature # Feature 

1. IP address 10. Total Requests 

2. Timestamp 11. Location 

3. Browser 12. City 

4. Operating System (OS) 13. Country 

5. Requests Per Second (RPS) 14. Longitude 

6. HTTP Status Code 15. Latitude 

7. Session Duration 16. Device Type 

8. Payload Size 17. Language 

9. URL Length 18. Anomalous 

 

An example of the first instance from the dataset is given in 
Table II, without the potentially identifying information (like 
IP address, location, longitude and latitude).  

The dataset is not publicly available due to privacy 
considerations and restrictions, in order to preserve the 
confidentiality of the individuals or entities associated with this 
data. However, authors of this paper are willing to address any 
reasonable requests for information that do not compromise the 
privacy and confidentiality of the individuals or entities 
involved. For all inquiries, contact Veljko Lončarević at 
veljkoloncarevicharry@gmail.com. 

Features were preprocessed by using a variety of 
preprocessing techniques. Missing values were replaced with 
the median value for numerical columns, and the most frequent 
occurrence for categorical values. Numerical features were 

scaled using the MinMax scaler technique. Categorical features 
with less than or equal to five unique values were encoded 
using One-Hot encoding method, while others were encoded 
using Target encoding. Target column (Anomalous) was 
encoded using binary encoding. The following machine 
learning algorithms were trained on the dataset (using default 
parameters): 

- Decision Tree, 

- Random Forest, 

- XGBoost, 

- LightGBM, 

- CatBoost. 

TABLE II.  FIRST INSTANCE TROM THE DATASET (ANONYMIZED) 

Feature Value Feature Value 

Timestamp 2023-05-12 
12:20 

URL Length  61 

Browser Chrome 113.0.0 City Belgrade 

OS Windows 10 Country Serbia 

Requests Per 
Second  

1.27 Device Type PC 

HTTP Status 
Code 

200 Language EN 

Session 
Duration 

32 Anomalous False 

Payload Size 533 Total Requests 5 

 

Prior to training the models, dataset was separated into 
different train and test splits using the ShuffleSplit 
technique, after which the models were trained on the train 
splits, and tested with the test splits, using the cross-
validation technique. Test results of each of the 
performance metrics (Accuracy, precision, recall, F1 score) 
and time to train each model were recorded and compared. 
For this analysis, Python programming language was used, 
with Pandas and NumPy libraries for data handling, 
matplotlib for result visualization, scikit-learn, XGBoost, 
LightGBM and CatBoost libraries for their 
implementations of the necessary decision tree-based 
algorithms. 

IV. RESULTS AND DISCUSSION 

A. Results 

Fig. 1 shows the time it took to train a specific model on the 
dataset using methods described in the previous chapter. The 
test results for the time required to train various machine 
learning models reveal significant differences in computational 
efficiency. Notably, the Decision Tree exhibited the shortest 
training time at 1.52 seconds, indicating its rapid model 
building process. LightGBM followed with a still efficient 4.77 
seconds, emphasizing its scalability and speed, especially 
suitable for large datasets. The Random Forest, while providing 
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robust ensemble learning, took 16.20 seconds, signifying a 
longer training duration compared to individual decision trees. 
XGBoost demonstrated a longer training time of 31.95 
seconds, highlighting the computational resources required for 
its sophisticated gradient boosting algorithm. Notably, 
CatBoost exhibited the longest training time among the tested 
models at 164.08 seconds, underscoring its thorough 
optimization process and potentially resource-intensive nature. 

 

Figure 1.  Comparison of Model Train Time 

Table III shows the comparison between performance 
metrics of different machine learning algorithms used in this 
analysis.  

TABLE III.  PERFORMANCE METRICS RESULTS 

Algorithm Accuracy Precision Recall F1 Score 

Decision 
Tree 

82% 78% 85% 81% 

Random 
Forest 

89% 93% 86% 89% 

XGBoost 96% 94% 94% 94% 

LightGBM 95% 96% 94% 95% 

CatBoost 97% 98% 98% 98% 

 

The test results of various machine learning algorithms 
demonstrate distinct performance metrics across accuracy, 
precision, recall, and F1 score. Notably, CatBoost achieved the 
highest accuracy at 97%, closely followed by XGBoost at 96%, 
indicating their effectiveness in overall prediction accuracy. In 
terms of precision, CatBoost also excelled with a value of 98%, 
suggesting a small false positive rate. XGBoost, Random 
Forest, and LightGBM exhibited competitive precision values, 
emphasizing their ability to make accurate positive predictions. 
When assessing recall, CatBoost also led with a value of 98%, 
signifying its capacity to capture a high proportion of actual 

positive instances. Random Forest demonstrated slightly lower 
recall value, while XGBoost and LightGBM remained strong 
in this metric. F1 score, which balances precision and recall, 
showcased the overall model performance, with CatBoost 
leading at 98%, closely trailed by XGBoost and LightGBM at 
94% and 95%, respectively. 

B. Discussion 

The comparison between the performance metrics test 
results of machine learning algorithms and their corresponding 
training times sheds light on the trade-offs between model 
performance and computational efficiency. Notably, the 
Decision Tree, despite having the shortest training time at 1.52 
seconds, demonstrated a lower performance across accuracy, 
precision, recall, and F1 score, suggesting its inability to 
capture more complex relationships in the dataset. On the other 
end of the spectrum, CatBoost, with the longest training time of 
164.08 seconds, exhibited superior predictive performance 
across all metrics, including the highest accuracy, precision, 
recall, and F1 score. This indicates that the computational 
resources invested in training CatBoost were justified by its 
outstanding predictive capabilities. The time to train models 
results align with expectations, where the more complex 
algorithms, such as XGBoost and CatBoost, requiring more 
substantial training times, demonstrated strong predictive 
performance. XGBoost, with a training time of 31.95 seconds, 
achieved competitive results across all metrics, striking a 
balance between training efficiency and model accuracy. 
Random Forest, while showing commendable performance, 
necessitated a more moderate training time compared to 
CatBoost, emphasizing the versatility of ensemble methods. 
LightGBM, with a training time of 4.77 seconds, offered an 
appealing compromise between computational efficiency and 
model effectiveness, achieving respectable scores across 
accuracy, precision, recall, and F1 score. The training time for 
LightGBM is notably shorter than that of CatBoost, 
demonstrating its efficiency in handling large datasets while 
maintaining strong predictive capabilities. In instances where 
paramount emphasis is placed on computational efficiency, the 
outcomes of this experiment advocate for the adoption of 
LightGBM. Conversely, when the primary imperative is 
superior predictive accuracy, the findings strongly advocate the 
utilization of CatBoost. 

C. Comparison with Related Research 

While existing research papers, such as [9] and [10], have 
presented compelling results in training machine learning 
models for anomaly detection in web traffic, this study 
contributes to the growing body of knowledge by corroborating 
and extending these findings. Our experiments align closely 
with the outcomes reported by [9], which demonstrated the 
efficacy of an XGBoost ensemble of deep neural networks in 
achieving a maximum accuracy of 99.5%, coupled with 98% 
precision and 97% recall. This not only reaffirms the 
robustness of such ensemble techniques but also establishes a 
consistent performance baseline across multiple studies. 
Moreover, our results bear resemblance to those reported in 
[10], where the authors introduced a novel SVM-C method and 
achieved accuracy levels ranging from 94% to 97% on diverse 
datasets. Our contributions lie in the replication and validation 
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of these results in the context of our experimental setup, 
thereby reinforcing the generalizability and reliability of these 
anomaly detection methodologies. Looking ahead, there are 
promising avenues for future work in this domain. One 
potential direction involves exploring the adaptability and 
scalability of the identified anomaly detection methods to 
diverse network architectures and traffic patterns. Additionally, 
investigating the impact of evolving cyber threats and attacks 
on the performance of these models could contribute to 
enhancing their robustness. Furthermore, the integration of 
advanced deep learning techniques or the exploration of 
ensemble methods combining various algorithms may unveil 
novel approaches for even more accurate and resilient anomaly 
detection systems. These future endeavors aim to refine and 
extend the current understanding of anomaly detection in web 
traffic, addressing emerging challenges and optimizing model 
performance across different real-world scenarios.  

V. CONCLUSION 

The juxtaposition of performance metrics and training 
times for diverse machine learning algorithms provides 
valuable insights into the intricate trade-offs between model 
efficiency and predictive accuracy. The Decision Tree, despite 
its swift training time of 1.52 seconds, exhibited inferior 
performance metrics, suggesting limitations in capturing 
intricate dataset relationships. Conversely, CatBoost, with the 
longest training time of 164.08 seconds, showcased 
unparalleled predictive capabilities, justifying the 
computational investment. As anticipated, more complex 
algorithms like XGBoost and CatBoost, demanding extended 
training times, demonstrated robust predictive performance. 
XGBoost, with a balanced 31.95 second training time, emerged 
as an efficient compromise between speed and accuracy. 
Random Forest displayed commendable performance with a 
moderate training time, emphasizing the versatility of ensemble 
methods. LightGBM, with a brief 4.77 second training time, 
struck an appealing balance between computational efficiency 
and model effectiveness. In scenarios prioritizing 
computational efficiency, LightGBM emerges as a favored 
choice, while CatBoost stands out for superior predictive 
accuracy. This research contributes to the broader field by 
reaffirming and extending findings from previous studies ([9], 
[10]). The results align with [9], validating the efficacy of an 
XGBoost ensemble of deep neural networks. Our findings also 
resonate with [10], where the SVM-C method achieved 
accuracy levels of 94% to 97%. Our contribution lies in 
replicating and validating these results within our experimental 

context, reinforcing the reliability and generalizability of 
anomaly detection methodologies. 

Looking ahead, future research could explore the 
adaptability of anomaly detection methods across diverse 
network architectures and evolving cyber threats. Investigating 
the integration of advanced deep learning techniques and 
ensemble methods may uncover novel approaches, enhancing 
accuracy and resilience in anomaly detection systems. These 
endeavors aim to refine the understanding of anomaly detection 
in web traffic, addressing emerging challenges and optimizing 
model performance across varied real-world scenarios. 
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