
23rd International Symposium INFOTEH-JAHORINA, 20-22 March 2024

 - 60 -

Implementation of inverse kinematics algorithm for
6DoF robot arm in Unity

Jelena Vidaković, Andrija Dević, Nikola Živković
Robotics Department

Lola Institute
Belgrade, Serbia

jelena.vidakovic@li.rs

Vladimir Kvrgić
Robotics Department

Institute Mihajlo Pupin, University of Belgrade
vladimir.kvrgic@pupin.rs

Mihailo Lazarević
Department of Mechanics

Faculty of Mechanical Engineering, University of Belgrade
mlazarevic@mas.bg.ac.rs

Abstract— In this paper, the implementation of the solution of the

inverse kinematics problem for the 6DoF industrial robot arm in

the Unity game engine is presented. Unity, one of the most

popular game engines, is a very powerful tool and a leading

platform for creating XR applications. Two different methods for

the implementation of the solution of the inverse kinematics

problem have been proposed: 1) Development and

implementation of the inverse kinematics algorithm of a specific

robot, and 2) Using inverse kinematics solvers by integration of

Unity with dedicated robotics development frameworks. For

verification of the proposed procedures, a serial robot with

cylindrical joints RL15 is used.

Keywords-Virtual reality; augmented reality; robot arm; Unity;

inverse kinematics;

I. INTRODUCTION

Integration of robotic solutions in manufacturing results in
improved productivity and asset performance, reduced
inefficiencies, and lower production and maintenance costs,
while enhancing system agility and flexibility, adding value to
the manufacturing process. In industrial settings, robotic arms
with 6 degrees of freedom are common because they are often
sufficient for many manufacturing tasks. Traditional
approaches to programming robots, particularly in the
manufacturing sector, are firmly established. Nevertheless,
these methods tend to be time-intensive and frequently demand
specialized expertise.

Extended reality (XR) is an umbrella term encompassing
technologies of Augmented reality (AR), Virtual Reality (VR),
and Mixed Reality (MR) have been increasingly used in
human-machine communication, as the technological basis for
the building of a new generation of Human-Machine Interfaces
(HMI). XR is developing at a rapid pace and finding
applications in various manufacturing aspects. Faster
computers, sophisticated camera technologies, and innovative
algorithms continue to inspire researchers to broaden the scope

of XR applications. Recently, Extended reality (XR)-assisted
solutions have been proposed in the robot programming
domain [1].

With the increasing availability of game engines and their
content, it is becoming more and more cost-effective for new
simulators to use them as starting building blocks [2]. Unity,
one of the most popular game engines, is a very powerful tool
and leading platform for creating XR applications with high-
quality 3D rendering which can be deployed across a variety of
platforms and has the capability to integrate different XR
SDKs [3].

To control the movements of the end-effector by a user in
Unity in Cartesian space, a solution to the inverse kinematics
problem has to be implemented in the robot's GameObject, a
fundamental building block representing entities in the Unity
scene. In this paper, the implementation of the solution of the
inverse kinematics problem for the 6DoF industrial robot arm
in the Unity game engine is presented. Two different methods
for the implementation of inverse kinematics in Unity have
been discussed. 6DoF industrial robot with cylindrical joints
RL15 previously developed and installed at the Laboratory for
Robotics and Machine Tools in Lola Institute [4-5] is used for
demonstration of the proposed procedures.

II. IMPLEMENTATION OF SOLUTION OF ROBOT INVERSE

KINEMATICS PROBLEM IN UNITY

A robot application program is a set of instructions that
cause the robot system to move the robot’s end effector in
order to perform the desired robot task correctly. One of the
essential ingredients of modern robot programming systems is
the thorough usage of the frame concept. Robot links’ poses
and object locations as well as motions are expressed in
accordance with human spatial intuition in terms of Cartesian
coordinates [6]. The position of a rigid body is defined by the
position vector of the origin of the frame rigidly attached to the
body w.r.t. to the reference frame. For orientation, conventional

 - 61 -

robot programming systems commonly use an adopted form of
Euler angles, a minimal representation of rigid body
orientation, to define the orientation of the frame attached to
the rigid body (end-effector) w.r.t. reference frame.

The solution of the inverse kinematics problem for 6DoF
industrial robot problem integration in the robot’s GameObject
in Unity can be performed in two manners:

1) Development and implementation of inverse kinematics

algorithm of a specific robot;

2) Using inverse kinematics solvers by integration of

Unity with dedicated robotics development frameworks.
The first method is necessary within the design of

standalone XR applications. The second method is related to
integration of Unity as a simulator with a dedicated robotics
development framework which enables advanced control,
motion planning and programming features such as ROS [7],
yielding the ROS-Unity robotics simulation suite. Other
integrations are possible, such as with 3D simulation and
offline/online programming environment RoboDK [8], which
is presented here.

A. Robot RL15 description

Robot RL15 is a 6DoF robot with cylindrical joints. In
Fig.1, the actual robot installed at Lola Institute, and its model
designed in SolidWorks is presented. Maximum rotational
speeds for axes 1 to 6 are 3500, 2800, 3500, 3400, 3400, 3400
rev/min respectively.

Figure 1. 6DoF industrial robot arm RL15

B. Integration of solution of inverse kinematics problem in

Unity-RoboDK Suite

RoboDK is a commercial cross-platform robot simulation

and programming environment [8]. Integration of solution of
inverse kinematics problem in Unity-RoboDK Suite is based
on the designed CAD model which is exported into STEP
(Standard for the Exchange of Product Data) file format. In
order to import the robot model in Unity, the STEP file is
converted into glTF file format [9], an open-source standard
for the efficient transfer of 3D models and scenes from one
application to another. Export of CAD robot model into glTF
file format is performed using GLTFExporter add-on [10].

RoboDK’s integrated inverse kinematics solver has been used
for the created robot model [11]. It was necessary to write a
script that allows interaction between Unity and RoboDK via
RoboDK API. Code written in C# executes mapping of robot
motion in RoboDK with robot motion in Unity in real-time.
Given that RoboDK uses a right-handed orientation contrary
to Unity, frame transformations between RoboDK and Unity
have to be included, and they are presented below.

C. Derivation of solution for direct and inverse kinematics

problem for Robot RL15

The kinematic model of the robot RL15 is developed using
Denavit–Hartenberg (D–H) convention, Fig.2. D–H
parameters for RL15 are given in Table 1.

Figure 2. RL15: Frames and D-H parameters.

TABLE I. D–H PARAMETERS FOR THE RL15 LINKS

Link
Variable

[°]
a [mm] d [mm] α[°]

1 q1 200 0 90

2 q2+90 600 0 0

3 q3 115 0 90

4 q4 0 825 -90

5 q5 0 0 90

6 q6 0 0 0

The solution to the robot forward kinematics problem is
used for motion definition, workspace definition, and the
development of a solution to the inverse kinematics problem.
The rotation matrix and position vector form 4×4
homogeneous transformation matrix (HMT) (1), widely used in
the robotics community to define the poses of the frames
attached to robot links.

 - 62 -

0 0
1 10

1 0 0 0 1

 
  
  

R P
T (1)

In (1), HMT describing a pose of frame enumerated with 1
w.r.t. frame enumerated with 0 (e.g. BASE frame) is given. 0

R1

is a rotational matrix, which can obtained using 12 different
extrinsic and 12 different intrinsic Euler angle rotation
sequences [12] for adopted frame orientation yielding the same
numerical results w.r.t. adopted reference frame, while 0

P1 is
the position vector. From Fig. (2) and Table I, and by using
formulation (1), HMTs describing a pose of frames i=1, 2,…,n
w.r.t. the BASE frame are given:

1 1 1 1 1 2 1 2 1 1 5

0 01 1 1 1 1 2 1 2 1 1 5
2

2 2 2 2

1 1 2 6 15 2 16 6

0 03 1 4 6 17 4 18 6
3 4

23 23 6 19 23 20 6

0
0

, ,
0 1 0 0 0
0 0 0 1 0 0 0 1

,
0

0 0 0 1 0 0 0 1

c s c a c s c c s c v

s c s a s s s c c s v

c s c a

v s v X v v v X

v c v Y v v v Y

c s Z v s v Z

    
             
   
    
          
   

1T T

T T

21 16 6 6 6 6 6 6

0 023 18 6 6 6 6 6 6
5 6

25 20 6 6 6 6 6 6

,

,

0 0 0 1 0 0 0 1

x x x x

y y y y

z z z z

v v a X n o a X

v v a Y n o a Y

v v a Z n o a Z





   
   

    
   
   

T T

 (2)

where

1 1 23 2 1 23 3 1 23 4 1 23 5 1 13 12 23 3 23 4

13 2 2 14 2 2 15 1 4 1 4 16 1 4 1 4 17 1 4 3 4

18 3 4 1 4 19 23 4 20 23 4 21 15 5 2 5 23 17 5 4 5

2

, , , , ,

, , , , ,

, , , , ,

v c s v c c v s s v s c v a v v c a s d

v s a v c a v v c s s v s c v s v c s v c

v v s c c v c c v c s v v c v s v v c v s

v

       

       

       

5 19 5 23 5 31 4 23 23 3 6 21 6 16 6 6 23 6 18 6

6 25 6 20 6 6 16 6 21 6 6 18 6 23 6 6 20 6 25 6

6 15 5 2 5 6 17 5 4 5 6 19 5 23 5 6 1 0 6 1 0

6

, , , ,

, , ,

, , , , ,

x y

z x y z

x y z

v c s s v d c s a n v c v s n v c v s

n v c v s o v c v s o v c v s o v c v s

a v s v c a v s v c a v s s c X c v Y s v

Z

       

       

       

 12 14 0 5 31, .v v v v v  
and shorthand notations, sin(qi) = si, cos(qi) = ci, sin(qi + qj) =
sij, and cos(qi + qj) = cij is used.

In 0T6 (2), X6, Y6, Z6 represent coordinates of the frame attached
to the sixth link (for simplicity, it is assumed that it coincides
with end-effectors frame). Here, to define end-effector
orientation w.r.t. BASE frame based on rotational matrix 0

R6 in
0
T6 (2), the Euler angles sequence ZYX (A, B, C) of intrinsic

rotations to form rotation matrix in 0T6 (2) is used. This implies
three successive rotations: rotation about axis z, for value A,
followed by a rotation about axis y’, of the newly rotated frame
for value B, followed by a rotation about axis x’’ of the newly
rotated frame for value C, all positive in a counter-clockwise
direction.

The inverse kinematics problem of a robot can be obtained as a
numerical or analytical solution. An analytical solution can be
obtained using either algebraic or geometric method. Here, an
algebraic solution using manipulation of terms of the HTMs
describing the relation between the successive links of the
RL15 as well as inverses of the mentioned HTMs is used [5].
Manipulation of terms of (2), as well as HMTs j

Ti ,
j
Ti where

j
Ti=(j

Tj+1)
 -1×.. 0

T1
-1×0

T6, i=1..6, j=1..i, provides a solution for
the inverse kinematics problem [5]. The algebraic method

allows multiple solutions to the inverse kinematics problem.
Here, the following is obtained:

1 6 6tan2(,),q a Y X (3)

2
3

2 2
6 1

2 2 23 3 4

2

 tan2(, 1) ,

, , arctan(/),
2

q a pom pom

p Z l
pom p s a lc a d

a l






  

 
   

 (4)

2 2 2 2 2
2 6 1 6 1 1 6

1 3 3 3 4

tan2(,),

,

q a pZ p p Z p p Z

p s a c d

    
 

 (5)

4

23 23 6 1 6 1 6 1 6 1 6

tan2(,),

, , z x y x y

q a a a

a s a c a a s a c a a c a s a

 
        

 (6)

5 tan2(5, 5)q a s c (7)

6 6 6 6 6 6 6tan2((),())

, ,

x y z x y z

4 1 23 4 1 4 1 23 4 1 4 23

q a n n n n n n n o n o n o

n s c s c s n s s s c c n s c

           

      
(8)

The developed algorithm has to be implemented in Unity as
C# scripts. Position and speed limits provided by actuators’
manufacturers are included as well.

D. Frame transformation

Using Unity editor as an integrated development
environment for industrial robot arm 3D simulations carries
certain challenges considering that, unlike specialized robotics
development environments, Unity wasn't initially designed
with the explicit purpose of accommodating robotics
applications. Regarding one of the fundamental aspects such as
frame orientation, Unity uses left-handed frame orientation.
Unity Euler angles are X, rotation about the xU axis of the Unity
frame, Fig. 3, Y, rotation about the yU axis of the Unity frame,
Fig. 3, and Z, rotation about the zU axis of the Unity frame, Fig.
3. In practical terms, left-handed frame employed by Unity has
to be translated to the right-handed frame used to define
solutions of robot RL15 direct and inverse kinematics
problems. Taking into account that conversion from the left to
right-handed frames and vice versa is impossible by three
successive rotations, here appropriate axes transformations
have been carried out by visual axes matching, from Unity
frame to inverse kinematics algorithm (IKa) frame used in 0

T6
(2), and are graphically represented in Fig. 3.

Figure 3. Unity GLOBAL frame and IKa BASE frame

 - 63 -

From Fig. 3., it can be adopted that A=-Y; B=-X; C=Z which
yields:

 
   

   

cos 0 sin

Rot , 0 1 0
sin 0 cos

U

Y Y

y Y

Y Y

  
  
    

 (9)

     
   

1 0 0
Rot , 0 cos sin

0 sin cos
Ux X X X

X X

 
     
   

 (10)

 
   
   

cos sin 0

Rot , sin cos 0

0 0 1
U

Z Z

z Z Z Z

 
 
 
 

 (11)

By substituting (9-11) into the rotational sequence (12),
numerical input0 R 6 in 0T6 (2) is obtained.

     IKaBASE
EE IKa IKa IKa=Rot , Rot , B Rot , z A y x CR 

III. VERIFICATION OF THE PROPOSED METHODS AND

ALGORITHMS

In Fig.4., Unity-RoboDk Suite: programming and
simulation of RL15 is presented.

Figure 4. Unity-RoboDk Suite: programming and simulation of RL15 [11]

In Fig.5., the programming and simulation of RL15 in
Unity editor based on the developed and implemented inverse
kinematics algorithm presented herein is shown. In Fig.6, the
developed AR application is given. The correctness of the pre-
engineered algorithms was confirmed by simulations of
programmed movements.

Figure 5. RL15 programming in Unity

Figure 6. Developed AR Android app

IV. CONCLUSON

In this paper, two distinct manners for implementation of
solution of inverse kinematics problem for 6DoF industrial
robot arm in Unity game engine are presented in order to create
XR robot programming applications. The proposed procedures
are verified using the serial robot with cylindrical joints RL15.

ACKNOWLEDGMENT

This research has been supported by the research grants of
the Serbian Ministry of Science, Technological Development
and Innovations, grant No. 451-03-65/2024-03/200105 from
5.2.2024 and No. 451-03-66/2024-03/200066.

REFERENCES

[1] S. K. Ong, A. W. W Yew, N. K Thanigaivel, A. Y .C. Nee, “Augmented

Reality-Assisted Robot Programming System for Industrial
Applications,” Robot. Comput. Integr. Manuf., vol. 61, pp. 101820,
2020.

[2] W. Garratt, S. Rithviik, F. Wang, “Achieving Interoperability Between
Gaming Engines by Utilizing Open Simulation Standards,” In

 - 64 -

Proceedings of the 2023 Simulation Innovation Workshop (SIW);
Simulation Interoperability Standards Organization - SISO, 2023, pp.
446.

[3] Unity Real-Time Development Platform | 3D, 2D, VR & AR Engine
Available online: https://unity.com (accessed on 18 December 2023).

[4] V. Kvrgic, J. Vidakovic, “Efficient Method for Robot Forward
Dynamics Computation,” Mech. Mach. Theory., vol. 145, pp. 103680,
2020.

[5] V. Kvrgic, Development of intelligent system for control and
programming of industrial robots, Doctoral dissertation, Faculty of
Mechanical Engineering, University of Belgrade, Belgrade, 1998.

[6] F. M. Wahl, T. Ulrike, Robot programming-from simple moves to
complex robot tasks, Institute for Robotics and Process Control,
Technical University of Brawnschweig, 2002.

[7] ROS: Home Available online: https://www.ros.org/ (accessed on 11
January 2024).

[8] Simulator for Industrial Robots and Offline Programming - RoboDK
Available online: https://robodk.com/ (accessed on 18 December 2023).

[9] glTF - Runtime 3D Asset Delivery Available online:
https://www.khronos.org/gltf/ (accessed on 18 December 2023).

[10] GLTFExporter – Three.Js Docs Available online:
https://threejs.org/docs/#examples/en/exporters/GLTFExporter
(accessed on 18 December 2023).

[11] J. Vidaković, A. Dević, I. Lazarević, N. Živković, Design of Augmented
Reality-Based Android App for Simulation and Programming of
Industrial Robots.; New Trends in Engineering Research, Proceedings of
the International Conference of Experimental and Numerical
Investigations and New Technologies, CNNTech 2023, 2023.

[12] J. Diebel, “Representing attitude: Euler angles, unit quaternions, and
rotation vectors,” Matrix, vol. 58(15-16), pp. 1-35, 2006.

	I. Introduction
	II. Implementation of solution of robot inverse kinematics problem in Unity
	1) Development and implementation of inverse kinematics algorithm of a specific robot;
	2) Using inverse kinematics solvers by integration of Unity with dedicated robotics development frameworks.
	A. Robot RL15 description
	B. Integration of solution of inverse kinematics problem in Unity-RoboDK Suite
	C. Derivation of solution for direct and inverse kinematics problem for Robot RL15
	D. Frame transformation

	III. Verification of the proposed methods and algorithms
	IV. Concluson
	Acknowledgment
	References

