
22
nd

 International Symposium INFOTEH-JAHORINA, 15-17 March 2023 

 - 278 - 

Accuracy of the numerical inversion of irrational and 

transcendental Laplace transform using Haar wavelet 

operational matrix 

Zdravko Stanimirović, Ivanka Stanimirović, Slobodanka Galović, Katarina Đorđević, Edin Suljovrujić  
Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade  

Belgrade, Serbia 

zdravko.stanimirovic@vinca.rs; ivanka.stanimirovic@vinca.rs; bobagal@vinca.rs; katarina.djordjevic@vinca.rs; edin@vinca.rs 

 
Abstract—Irrational and transcendental functions can often be 

seen in signal processing or physical phenomena analysis as 

consequences of fractional-order and distributed-order models 

that result in fractional or partial differential equations. In cases 

when finding solution in analytical form tends to be difficult or 

impossible, numerical calculations such as Haar wavelet 

operational matrix method can be used.  In order to evaluate 

accuracy of the numerical inversion of irrational and 

transcendental Laplace transform using Haar wavelet 

operational matrix, a number inverse Laplace transforms are 

numerically solved and compared with the analytical solutions 

and solutions provided by Invlap and NILT algorithms.  
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I.  INTRODUCTION 

In physical phenomena analysis and signal processing 
irrational and transcendental functions can often be seen. They 
come as consequences of fractional-order and distributed-order 
models that result in fractional or partial differential equations 
[1-4].  In cases when finding solution in analytical form tends 
to be difficult or impossible [5-10], numerical calculations such 
as Haar wavelet operational matrix [11-14] method can be 
used.  Haar wavelet establishes a direct procedure for transfer 
function inversion using the wavelet operational matrix for 
orthogonal function set integration.  

In this paper accuracy of the Haar wavelet operational 
matrix for finding inverse Laplace transforms will be evaluated 
by comparison of results obtained by Haar wavelet method, 
analytical results and results obtained by Invlap algorithm and 
Zakian method based NILT algorithm. Invlap numerical 
inverse Laplace transform algorithm is based on De Hoog’s 
algorithm [15], while Zakian method based NILT algorithm is 
based on the Fourier series method with Padé approximation 
[16]. These two numerical inverse Laplace transform 
algorithms were chosen because they are effective and can deal 
with irrational and transcendental functions.  

II. HAAR WAVELETS 

Haar functions are defined in the interval of [0,τ) [11-12] by 

the scaling function h0(t): 

ℎ0�𝑡 = 𝑚−1
2    (1) 

and the fundamental square wave h1(t): ℎ1�𝑡 
= 𝑚−1

2      1, 2−𝑗 𝜏�𝑘 − 1 ≤ 𝑡 < 2−𝑗 𝜏�𝑘 − 1 2           −1, 2−𝑗𝜏�𝑘 − 1 2  ≤ 𝑡 < 2−𝑗𝜏𝑘        

0, elsewere in  0, τ                                              (2) 

Other wavelets are: ℎ𝑖�𝑡 
= 𝑚−1

2  2𝑗/2, 2−𝑗 𝜏�𝑘 − 1 ≤ 𝑡 < 2−𝑗𝜏(𝑘 − 1 2 )−2𝑗/2, 2−𝑗 𝜏�𝑘 − 1 2  ≤ 𝑡 < 2−𝑗 𝜏𝑘
0, otherwise in  0, τ  

(3) 

where m is being denoted as the maximum level of resolution 

and i= 0,1,2…,(m-1), m=2α, αϵZ
+
. Integer decomposition of 

the index i is designated by j and k. 

Any function x(t) can be expanded into a Haar series and in 

the matrix form it can be given as: 𝒙𝑇 = 𝒄𝑇 ∙ 𝑯    (4) 

where c
T
 and H are the Haar coefficient vector and the Haar 

function vector, respectively: 𝒄𝑇 = [𝑐0 𝑐1 … 𝑐𝑚−1]   (5) 𝑯 =  ℎ0 ℎ1 ⋯ ℎ𝑚−1 𝑇    (6) 

 

Integration of the Haar wavelet function H can be written as: 

� 𝐻�𝑡 𝑑𝑡 = 𝑯 ∙ 𝑸𝒎𝑖
0

 

  (7) 

where QH is the Haar operational matrix for integration: 
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𝑸𝒎 = (2 ∙ 𝑚)−1 �2 ∙ 𝑚 ∙ 𝑸𝒎/𝟐 −𝜏 ∙ 𝑯𝒎/𝟐𝑻𝜏 ∙ 𝑯𝒎/𝟐𝑻 𝟎𝒎/𝟐  , 0 ≤ 𝑡 < 𝜏   

(8) 

Therefore, generalized Haar operational matrix can be 

expressed as: 𝑸𝑯 = 𝑯 ∙ 𝑸𝒎 ∙ 𝑯𝑻   (9) 

In that case, the inversion of the Laplace transform X(s) can be 

given by: 

 𝒙𝑇 = 𝒄𝑇 ∙ 𝑯 =  2𝑚 −2𝑚 … −2𝑚 1×𝑚 ∙𝑯𝑇 ∙ 𝑿 �𝑸𝐻 ∙ 𝑯     (10) 

where X̂(QH) is the discrete form of the transfer function X(s). 

 

III. ACCURACY OF THE HAAR WAVELET METHOD – 

PERIODIC FUNCTION 

Let us take the following transfer function into 
consideration: 

𝑋(𝑠) =
1𝑠�𝑠 ∙ 𝑒−𝑘𝑠  

   (11) 

When we replace 1/s by Haar wavelet operational matrix 
QH: 𝑋��𝑸𝑯 = 𝑸𝐻1.5 ∙ 𝑒−𝑘𝑸𝑯   (12) 

Then the inversion of Laplace transform can be calculated 
by:  𝒙𝑻 =  2𝑚 −2𝑚 … −2𝑚 1×𝑚 ∙ 𝑯𝑇 ∙𝑸𝑯1.5 ∙ 𝑒−𝑘𝑸𝑯 ∙ 𝑯        (13) 

The analytical inverse Laplace transform of the equation 
(11) is: 

𝑥(𝑡) =
1�𝜋𝑘 ∙ sin 2�𝑘𝑡  

  (14) 

This example is chosen because sinusoidal functions 
appear everywhere, and they play an important role in circuit 
analysis. Apart from electrical engineering they are seen in 
various branches of science and engineering.  

In case of k=1, for transfer function X(s) given by the 
equation (11), analytical result and numerical results obtained 
by Haar wavelet method (m=1024), Invlap and NILT 
algorithms are shown in Fig. 1(a) for interval [0,1) and in Fig. 
1(c) for expanded interval [0,τ). Standard and absolute errors 
for Haar wavelet method with three different maximum 
resolution levels (m=64, 256 and 1024) as well as for Invlap 

and NILT algorithms are presented in Fig. 1(b) for interval 
[0,1) and in Fig. 1(d) for expanded interval [0,τ). 

 

 
(a)   

 

 (b) 

 

 (c)  
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 (d) 

Fig. 1. The inverse Laplace transform of transfer function 
X(s) given by the equation (11) obtained analytically and 
numerically by Haar wavelet method (m=1024), Invlap and 
NILT algorithms for (a) interval [0,1) and (c) expanded 
interval [0,τ). Standard and absolute errors for Haar wavelet 
method with three different maximum resolution levels and 
Invlap and NILT algorithms for intervals (b) [0,1) and (d) 
[0,τ).  

For the transfer function given by the equation (11), for 
both intervals, Haar wavelet method is in a good agreement 
with analytical solution as well as other two algorithms. When 
Haar wavelet method is in question, absolute error is in the  
10

-4
-10

-6 
range for maximum m value during the [0,τ) interval. 

Haar wavelet method performs better than NILT whose 
absolute error is almost constant over the entire time span and 
is of the order of 10

-2
. Absolute error of Invlap algorithm is of 

the order of 10
-10

.  Haar wavelet method standard error is of 
the order 10

-1 
for both intervals and for all three maximum 

resolution levels. Standard error of Invlap and NILT are of 
order of 10

-3
 for interval [0,1) and 10

-2 
for the expanded 

interval [0,τ).  

IV. ACCURACY OF THE HAAR WAVELET METHOD –  

ERROR FUNCTION 

Consider the following transfer function: 

𝑋(𝑠) =
1�s ∙  �s + 𝑎    (15) 

In terms of 1/s transfer function becomes: 𝑋�  1𝑠 =
1𝑠 ∙ 1 1+

𝑎�𝑠       (16) 

Each 1/s is then replaced by Haar wavelet operational 
matrix QH: 𝑋��𝑸𝑯 = 𝑸𝑯 ∙ �𝑰 + 𝑸𝑯0.5 ∙ 𝑎 −1  (17) 

Then, the inversion of Laplace transform can be calculated 
by:  𝒙𝑻 =  2𝑚 −2𝑚 … −2𝑚 1×𝑚 ∙ 𝑯𝑇∙ 𝑸𝑯 ∙ �𝑰 + 𝑸𝐻0.5 ∙ 𝑎 −1 ∙ 𝑯 (18) 

The analytical inverse Laplace transform of the equation 
(15) is: 𝑥�𝑡 = 𝑒𝑎2𝑡 ∙ 𝑒𝑟𝑓𝑐 𝑎�𝑡     (19) 

In case of a=1, for transfer function X(s) given by the 
equation (15), analytical result and numerical results obtained 
by Haar wavelet method (m=1024), Invlap and NILT 
algorithms are shown in Fig. 2(a) for interval [0,1) and in Fig. 
2(c) for expanded interval [0,τ). Standard and absolute errors 
for Haar wavelet method with three different maximum 
resolution levels (m=64, 256 and 1024) as well as for Invlap 
and NILT algorithms are presented in Fig. 2(b) for interval 
[0,1) and in Fig. 2(d) for expanded interval [0,τ). 

 

 

(a) 

 

 (b) 
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 (c) 

 

 

 (d) 

Fig. 2. The inverse Laplace transform of transfer function  
X(s) given by the equation (15) obtained analytically and 
numerically by Haar wavelet method (m=1024), Invlap and 
NILT algorithms for (a) interval [0,1) and (c) expanded 
interval [0,τ). Standard and absolute errors for Haar wavelet 
method with three different maximum resolution levels and 
Invlap and NILT algorithms for intervals (b) [0,1) and (d) 
[0,τ). 

 
For the transfer function given by the equation (15), for 

both intervals, Haar wavelet method shows a good agreement 
with analytical solution as well as Invlap and NILT. When 
Haar wavelet method is in question, absolute error decreases 
with time over the entire time span. It is in 10

-2
 – 10

-6
 range 

for maximum m. Standard error is of the order 10
-1 

for all three 
maximum resolution levels during the whole interval while 
Invlap and NILT perform better with standard errors of order 
of 10

-3
. Absolute error of NILT and Invlap algorithms are 

almost constant during the whole time. Haar wavelet method 
performs better than NILT whose absolute error is of the order 
of 10

-2
. Absolute error of Invlap algorithm is of the order of 

10
-9

.   

V. ACCURACY OF THE HAAR WAVELET METHOD –  

ERROR FUNCTION AND COMPLEMENTARY ERROR FUNCTION 

When we take into consideration the following transfer 
function: 

𝑋�𝑠 =
𝑏2 − 𝑎2�s − 𝑎2  �𝑠 + 𝑏    (20) 

Then, in terms of 1/s, it becomes: 

  

𝑋�  1𝑠 =
1𝑠�𝑠 𝑏2 − 𝑎2 1 − 𝑎2𝑠   1 +

𝑏�𝑠  

  (21) 

Each 1/s is then replaced by Haar wavelet operational 
matrix QH: 𝑋��𝑸𝑯 = �𝑏2 − 𝑎2 𝑸𝐻1.5[�𝑰 − 𝑎2𝑸𝑯 ∙�𝑰 + 𝑏𝑸𝑯0.5 ]−1  (22) 

Then the inversion of Laplace transform can be calculated 
by: 

𝒙𝑻 =  2𝑚 −2𝑚 … −2𝑚 1×𝑚 ∙ 𝑯𝑇∙ �𝑏2 − 𝑎2 ∙ 𝑸𝐻1.5∙ [�𝑰 − 𝑎2𝑸𝑯 ∙ �𝑰 + 𝑏𝑸𝑯0.5 ]−1 ∙ 𝑯 

(23) 

In the code, fractional power of matrix is calculated 
indirectly using principal matrix logarithm where the matrix 
function is built on the principal scalar logarithm. The 
analytical inverse Laplace transform of the equation (20) is: 

𝑥�𝑡 = 𝑒𝑎2𝑡 𝑏 − 𝑎 𝑒𝑟𝑓 𝑎�𝑡  − 𝑏𝑒𝑏2𝑡  𝑒𝑟𝑓𝑐 𝑏�𝑡   (24) 

Error function erf(x) and complementary error function 
erfc(x) are two the most widely used functions in science. 
These functions occur extensively in problems relating to heat 
conduction, diffusion and probability. 

In case of a=0.5 and b=1, for transfer function X(s) given 
by the equation (20), analytical result and numerical results 
obtained by Haar wavelet method (m=1024), Invlap and NILT 
algorithms are shown in Fig. 3(a) for interval [0,1) and in Fig. 
3(c) for expanded interval [0,τ). Standard and absolute errors 
for Haar wavelet method with three different maximum 
resolution levels (m=64, 256 and 1024) as well as for Invlap 
and NILT algorithms are presented in Fig. 3(b) for interval 
[0,1) and in Fig. 3(d) for expanded interval [0,τ). 
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 (a) 

 (b) 

 (c) 

 

 (d) 

Fig. 3. The inverse Laplace transform of the transfer 
function X(s) given by the equation (20) obtained analytically 
and numerically by Haar wavelet method (m=1024), Invlap 
and NILT algorithms for (a) interval [0,1) and (c) expanded 
interval [0,τ). Standard and absolute errors for Haar wavelet 
method with three different maximum resolution levels and 
Invlap and NILT algorithms for intervals (b) [0,1) and (d) 
[0,τ). 

 
For the transfer function given by the equation (20), in both 

[0,1) and [0,τ) interval, Haar wavelet method shows a good 
agreement with analytical solution as well as Invlap and 
NILT.  When Haar wavelet method is in question, absolute 
error decreases with time during the [0,1) interval with 
minimum of the order of 10

-7
 for maximum m value. Standard 

error is of the order 10
-1 

for all three maximum resolution 
levels. When expanded interval is in question, after the [0,1) 
interval, Haar absolute error values fluctuate and have 
minimum values around t=3 when the increase in error with 
time starts. Standard error reaches the order of 10

1 
while 

Invlap and NILT perform slightly better with standard errors 
of order of 10

0
. Absolute error of NILT algorithm is almost 

constant during the whole time and is of order of 10
-2

. 
Absolute error of Invlap increases with time. It is in 10

-10
 –  

10
-1

 range for [0, τ) interval. 
 

VI. ACCURACY OF THE HAAR WAVELET METHOD –  

HEAVISIDE UNIT STEP FUNCTION 

Let us consider: 

𝑋(𝑠) =
1𝑠�𝑠 �1 − 𝑒−𝑇𝑠  

  (25) 

When we replace 1/s by Haar wavelet operational matrix 
QH: 

𝑋��𝑸𝑯 = 𝑸𝑯1.5 ∙ (𝑰 − 𝑒−𝑇𝑸𝐻−𝟏) 
 (26) 
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Then the inversion of Laplace transform can be calculated by: 

𝒙𝑻 =  2𝑚 −2𝑚 … −2𝑚 1×𝑚 ∙ 𝑯𝑇 ∙ 𝑸𝑯1.5∙ (𝑰 − 𝑒−𝑇𝑸𝐻−𝟏) ∙ 𝑯 (27) 

The analytical inverse Laplace transform of equation (25) is: 

 
𝑥(𝑡) =

2�𝜋 ∙ �𝑥 ∙ 𝐻�𝑥 − �𝑥 − 𝑇 ∙ 𝐻�𝑥 − 𝑇   
(28) 

The Heaviside unit step function is used in the signal 
processing. It represents signals that switch on at specified 
times and stay switched on indefinitely. It is also used in 
structural mechanics to describe different structural loads, in 
engineering where periodic functions are represented, in 
physics for sudden changes (when breaks are being applied or 
during collisions), etc. 

In case of T=0.5 for transfer function X(s) given by the 
equation (25), analytical result and numerical results obtained 
by Haar wavelet method (m=1024), Invlap and NILT 
algorithms are shown in Fig. 4(a) for interval [0,1) and in Fig. 
4(c) for expanded interval [0,τ). Standard and absolute errors 
for Haar wavelet method with three different maximum 
resolution levels (m=64, 256 and 1024) as well as for Invlap 
and NILT algorithms are presented in Fig. 4(b) for interval 
[0,1) and in Fig. 4(d) for expanded interval [0,τ). 

When Haar wavelet method is in question, functions with 
sharp turns are challenging. For the transfer function given by 
the equation (25), over the [0,1) interval Haar method 
performs well at the sharp turn, almost as well as Invlap 
algorithm.  Absolute errors at the peak for all algorithms are of 
the order of 10

-2
. However, because of the same maximum 

resolution level value (1024) and a longer period of time, Haar 
wavelet has poorer performances at the sharp turn than both 
Invlap and NILT in the [0,τ) interval.  Over the [0,τ) interval 
absolute error of Harr wavelet method varied in the 10

-2 
- 10

-4 

range.  For NILT algorithm, the absolute error has the highest 
value. It is of the order of 10

-2
. Apart from the sharp turn, 

absolute error of Invlap algorithm is of the order of  
10

-10
. Haar wavelet method standard error is of the order 10

-1 

during the [0,1) interval and 10
-2 

during the [0,τ) interval for 
all three maximum resolution levels. Standard errors of Invlap 
and NILT are of order of 10

-3
 over the whole time span.  

From Figs. 1-4 can be seen that numerical inversion 
Laplace transform using Haar wavelet operational matrix 
performs very well in case of irrational and transcendental 
functions. Results obtained by standard and absolute error 
calculations show that for all examples Haar wavelet standard 
error values are mainly in the 10

-1
 – 10

-2
 range and that 

absolute errors depend on the transfer function in question. 
Accuracy of the numerical solution depend on the value of the 
maximum resolution level of the operational matrix, especially 
at sharp turns. Higher values of the parameter m provided 
better agreement with the analytical solution.  

 

 (a) 

 

 (b) 

 

 (c)    
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 (d) 

Fig. 4.  The inverse Laplace transform of transfer function  
obtained analytically and numerically by Haar wavelet method 
(m=1024), Invlap and NILT algorithms for (a) interval [0,1) 
and (c) expanded interval [0,τ). Standard and absolute errors 
for Haar wavelet method with three different maximum 
resolution levels and Invlap and NILT algorithms for intervals 
(b) [0,1) and (d) [0,τ). 

VII. CONCLUSION 

In this study accuracy of the Haar wavelet operational 
matrix application in the inverse Laplace transform numerical 
calculations for the case of irrational and transcendental 
transfer functions was investigated. Results for a number of 
analytically solved inverse Laplace transforms of periodic and 
non-periodic functions are presented and obtained results are 
compared with the analytical solutions and results obtained by 
Invlap and NILT - algorithms that are known to be effective 
when irrational and transcendental functions are in question. 
Agreement of the numerical and analytical solutions is 
quantitatively evaluated using standard and absolute error 
calculations. For the most of presented examples Haar wavelet 
method standard error values are in the 10

-1
 – 10

-2
 range and 

absolute errors depend on the transfer function in question. 
Accuracy of the numerical solution depends on the value of the 
operational matrix maximum resolution level. Higher values of 
the operational matrix maximum resolution level improve the 
agreement between the numerical and analytical solutions 
especially at sharp turns when longer intervals require higher 
resolution levels. When compared, all the algorithms used have 
given acceptable results. Haar wavelet method performed 
better that NILT for all presented examples. Although Invlap 
algorithm performed better that Haar wavelet method, results 
obtained by Haar were in good agreement with analytical 
solutions for all presented examples. This approach is 
especially useful when the original cannot be represented by an 
analytical formula and numerical method must be used. In that 
case validity of the obtained result can be crosschecked and 
error can be estimated.  
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