
20th International Symposium INFOTEH-JAHORINA, 17-19 March 2021

 - 174 -

Users, Developers and Managers vs. Traditional and

Non-traditional Computing Mechanisms in

Automated Software Testing: A Systematic Literature

Review

Sara Gračić, Vuk Vuković

University of Novi Sad, Faculty of Economics

Subotica, Serbia

saritta4u@gmail.com, vuk.vukovic@ef.uns.ac.rs

Abstract - Testing is important in producing high quality software

and can be done manually and/or automatically. Automation has

potential to reduce testing effort (e.g. in developing test cases,

generating test data) and speed up testing cycles. This paper aims

to present state-of-the-art achievements in automated testing

through its diverse application in practice and investigate how

users, developers and managers are influenced by this

phenomenon. Three scientific databases were chosen and the

search resulted in 46 final papers. Majority of sources proposed

traditional testing techniques, while one proposed chemical

reaction networks. Although automation is present in developing

mobile apps, embedded systems, automotive industry etc., most

developers do not properly automate testing. Two sources

marked user reviews as important, while managers are drawn to

potential savings in time, effort and money.

Keywords-automated software testing; embedded systems;

automotive industry; non-traditional computing mechanisms; SLR

I. INTRODUCTION

With the proliferation of software in every aspect of our
lives, its high quality is of at-most-importance, especially in
safety-critical systems e.g. in healthcare, automotive industry,
avionics. Software testing, as an important verification and
validation activity [1], ensures that the demanded quality is
achieved through detection and removal of bugs/defects [2].

On the other hand, proliferation has also led to increase in
software’s size and complexity [3], so testing software of that
magnitude consumes a lot of time and effort [3] and up to 50%
of total software project costs are related to testing [4], [5].

Since automated software testing has potential to reduce
high effort invested in “manually developing and maintaining
test cases” [6], decrease costs [4], improve testing
effectiveness [4], [6] and speed-up testing cycles [6], there has
been an increase in interest regarding automation of software
testing [4]. Therefore, research in this field has advanced over
the years, which has resulted in developing a wide range of
available testing techniques and tools [6].

After the Introduction, the rest of the paper is structured as
follows: Section II presents research methodology (research

questions, chosen scientific databases, search strings, inclusion
and exclusion criteria, and how the review was conducted);
Section III extracts the review data and discusses findings,
while conclusion is given in Section IV.

II. RESEARCH METHODOLOGY

Since systematic literature reviews (SLRs) are designed to
provide detailed information about a specific phenomenon [7],
they are becoming a vital part of scientific research [8]. SLRs
also have to be fair and thorough [7], otherwise their scientific
value will be questionable. They represent a mean of
identification, evaluation and interpretation of available
research [7] related to a topic of interest. A SLR consists of
three main phases: planning a review, conducting a review and
reporting review findings [7].

A. Planning the Review

Since automation of software testing is becoming very
important for both industry and academia, this SLR is focused
on summarizing the available knowledge and identifying
current trends in the area of automated software testing.

1) Defining Research Questions: Based on the set
objective, following research questions were constructed.
RQ1: How many studies focused on automated software
testing were published from 2016 till January 14th 2021? RQ2:
What were the main topics discussed in these papers? RQ3:
What are current trends in the area of automated software
testing? RQ4: How are users, developers and managers
influenced by automated software testing?

2) Defining Search Strings for Scientific Databases: To
provide answers to research questions, a SLR was conducted
to identify topics and trends discussed in academia. Three
electronic databases were chosen for conducting SLR: IEEE
xplore, AIS eLibrary and Science Direct. Research string was
set in the following way: “automated software testing” and
applied in the above stated electronic databases.

3) Defining Inclusion and Exclusion Criteria: Publishing
period was set to last 6 years - from 2016 till January 14th

2021, to collect the most recent research findings. Only papers
published in journals and conferences were included in the

 - 175 -

initial population. Grey literature (e.g. blog posts, white
papers) did not enter the initial population. Only primary and
secondary studies in the domain of automated software testing
were examined. Language was not set as an obstacle for
entering the initial population, although it may become one in
the next stages (if title or abstract are not in English).

B. Conducting the Review

Advanced search was chosen in all databases. After
applying search string and criteria “all fields” in AIS eLibrary,
“all metadata” in IEEE xplore and “find articles with these
terms” in Science Direct, search resulted in initial population of
95 hits, structured in the following order: IEEE explore (29),
AIS library (8) and Science Direct (58).

Titles, keywords and abstracts were evaluated to ensure that
a study is in function of answering research questions. All
papers that were not in the field of interest were eliminated. 1
paper had abstract in Portuguese and English and was relevant
to SLR; 3 papers did not have full access [3], [5] and [9]. Only
3 papers from AIS eLibrary, 29 from IEEE xplore and 14 from
Science Direct entered the final population. Due to limited
number of pages, extraction of results and discussion are joined
into Section III.

III. EXTRACTING RESULTS AND DISCUSSING FINDINGS

Authors of this paper aimed to provide a summary of state-
of-the-art knowledge regarding automated software testing and
investigate how users, developers and managers are involved in
this process. Thus, a SLR was conducted and 46 papers were of
interest for this research, which gives answer to RQ1 (How
many studies focused on automated software testing were
published from 2016 till January 14th 2021?).

Findings, extracted from those studies, were categorized in
groups based on the context in which automated software
testing was presented and are discussed in the following
paragraphs, thus providing answers for RQ2 (What were the
main topics discussed in these papers?) and RQ3 (What are
current trends in the area of automated software testing?).

Software has become a part of our everyday life, which has
led to increase in its size, complexity [3] and demand for its
high quality has also risen. Consequently, testing effort has
been increased and testing participates 50% in total project
costs [4], [5]. Therefore, academia and industry have shifted
focus towards potential benefits of automated software testing
in various fields.

Application of automated software testing on the Web was
in focus of several papers. Since open source tools have
potential for productivity savings, productivity of two open
source automated testing tools, measured in time, was
compared and time difference was significant [10]. This
finding indicates that appropriate choice of testing tool could
potentially decrease testing time.

Testing web apps is not without difficulties - performance
testing can be problematic due to unpredictable load, response
time etc. [11]. Therefore, correlation of performances testing
tools was done in terms of usability and performance
parameters in [11].

To achieve high level of automation and thoroughness in
testing of web API, artificial intelligence techniques were
applied for autonomous software failure detection. Bots were
used to generate test inputs and correctness of test outputs was
evaluated through: “1) patterns learned from previous
executions of the SUT” and “2) knowledge gained from
analyzing thousands of similar programs”. Developed
prototype automatically detected bugs in some real-world APIs
[12].

General instructions for manually testing Web sites are
acceptable, but could those be automated? In order to automate
these instructions, semantic usage patterns were presented in
[13]. The model recorded “general topics behind the individual
steps of interactions”. Models were extracted from existing test
descriptions, regardless of their form i.e. they could either be in
natural language or in the form of system tests. These patterns
can also be applied for applications they were not designed for.
Applications can be tested automatically for behavioral
anomalies [13].

Software testing is also knowledge-intensive, so it could be
improved by semantic web technologies, e.g., ontologies,
“which have been frequently used in knowledge engineering
activities” [1]. A SLR was conducted and benefits of using
semantic web enabled software testing for industry and
academia were presented; testing activities that would have use
of these techniques were pointed out, as well as problems in
application of semantic web enabled techniques [1].

Several sources were focused on fuzzing. Fuzzing is a
popular [14] automated testing technique that “looks for
vulnerabilities by causing crashes through the introduction of
invalid, unexpected, or random data” as inputs and improves
software’s robustness and security [15]. It possesses
conceptual simplicity, deployment barriers are low and there is
abundance of “empirical evidence” that fuzzing is effective in
“discovering real-world software vulnerabilities” [14].

Fuzzing was applied in [15] to test Janus WebRTC media
server’s behavior, which allowed fixing several important
software issues. A “unified, general-purpose model of fuzzing
together with taxonomy of the current fuzzing literature” was
presented in [14].

With the expansion of mobile devices, fuzz tests have been
applied to mobile platforms as well. While most studies are
focused on GUI and implementation at the application level
[16], it was argued in [16] that detecting vulnerabilities in
lower levels is important, especially since that would affect
many Android users. Therefore, genetic algorithms for
efficient fuzz testing for Android app installation process were
proposed. Black-box fuzzing tool created “more unique
crashes” in less time and detected new and existing bugs [16].

Machine learning plays an important role in automated
software testing. An automated text clustering approach with a
semi-automated version for clustering errors in term of their
root causes was proposed to save effort in triaging and fixing
bugs. Applied approach outperformed other baseline methods
for classification and clustering [17].

Machine learning was also used to automatically prioritize
test cases, based on the level of failure probability. Metrics

 - 176 -

about software under test and historical commit messages
were used for creating data file for generating decision trees in
Weka. The model was used for prioritizing tests according to
prediction where defects will occur [18].

Achieving minimum level of coverage for every system
build is desirable. However, executing all test cases and
generating new ones for all classes for every commit is not
feasible, so selection of subset of classes to be tested has to be
made. “Knowing a priori the branch coverage that can be
achieved with test data generation tools might give some
useful indications” [19], so machine learning was used to
develop models for predicting branch coverage that would be
achieved by test data generation tools in [19].

Multi-Objective Ant Lion Optimization algorithm resolved
multi-objective optimization of coverage based test data. The
algorithm was validated through comparison with random
testing and conventional genetic algorithms [20].

In [4], EvoPSO algorithm, which is based on swarm
intelligence paradigm, was implemented in EvoSuite tool for
test data generation. Its performance was evaluated on SFIIO
dataset and it was showed that EvoPSO was efficient and
competitive.

Finding faults is complex and time consuming. So, many
Spectrum Based Fault Localization techniques for automated
fault localization in single-fault software have been developed.
However, they are not always effective for multi-fault
software [3]. Therefore, Chaos-based Genetic Algorithm for
Multi-fault Localization based on Spectrum Based Fault
Localization for automated fault localization in single and
multi-fault programs was proposed. Suspicion for every
program statement was calculated and ranked. Lower rank
meant higher probability of a statement being faulty.
Experiments showed that this technique outperformed
Spectrum Based Fault Localization techniques [3].

Neuroevolution of Augmenting Topologies algorithm was
applied for automated generation of new test suits or coverage
improvement of existing test suits. Test suites were
automatically generated for white box testing [5].

Testing automation is important in different areas of
industry. Automated test case generation in practice and
research was analyzed and “lessons learned from transferring
software testing research results to industry” were presented in
[6]. Experience in automated smoke testing in a cross-platform
game application was presented with “specific details and
challenges associated with setting up and maintenance of day-
to-day automated testing activities” in [21].

Automated testing method for improving testing efficiency
for smart TV was proposed in [22]. Test platform was
“designed to send the python script to the Android smart TV
automatically through its Android debug bridge interface”.
Their method reduced testing time and more errors were
tested, when compared to manual testing [22]. Architecture for
automated warship software testing was proposed in [23].

Automation is highly present in embedded systems.
Therefore, authors in [24] conducted a SLR. Many approaches
were presented. E.g. black-box testing for embedded software

with specific test automation tool was conducted. Automated
test input generation in Java for embedded device was
evaluated. A search-based approach for automated model-in-
the-loop testing of continuous controllers was presented. An
automated approach for test suites reduction was presented.
For one embedded system, automation of test case generation
with the help of Genetic algorithms was applied. Authors of
[24] stated that automation can be successfully applied not just
in execution of test cases, but in test case design and test
evaluation as well.

A method for automated testing analysis for IoT was
proposed in [2]. If automated, software testing for IoT enables
test reusability and repeatability, thus decreasing test coverage
cost and time. Authors compared “automated software testing
for IoT transactions and system peripherals such as sensor,
DMA controller, internal counters, physical layer, and virtual
layer using IoT specification based software testing” [2].

Software testing, as a time consuming task, should be
automated, since that could shorten development time.
Although automation has its advantages and disadvantages,
management is especially interested in automation’s effects on
software’s cost, quality and time [25], so authors in [25]
investigated critical factors related to cost and return of/from
automation, which is a very expensive activity. Three different
software products were investigated and their experiments
showed “positive effects of test automation on cost, quality
and time to market”.

Automotive software has gained importance, due to
software’s role in controlling vehicles (e.g. “window
controller, smart-key system, and tire pressure monitoring
system”). Thus, human effort in testing automated software is
quite high and, consequently, the industry is focused on
finding ways to ensure that automotive software is of the
highest quality, but with reduced human effort [26]. Authors
applied concolic testing for automotive software developed by
Hyundai Mobis in [26]. They developed a framework MAIST
“that automatically generates the test driver, stubs and test
inputs to a target task”. In concolic testing, MAIST achieved
90.5% branch coverage and 77.8% MC/DC coverage on the
integrated body unit (IBU) software. It also reduced the cost of
IBU coverage testing through reducing the manual testing for
coverage testing by 53.3%.

The same group of authors (from [26]) conducted a new
study arguing that applying automated test generation in
automotive software is “technically challenging because of
false alarms caused by imprecise test drivers/stubs and lack of
tool supports for symbolic analysis of bit-fields and function
pointers in C” [27]. So, they developed MAESTRO - an
automated testing framework. Test driver and stubs for a
target task were built automatically, after which test inputs
were generated and concolic testing and fuzzing were applied
together in an adaptive way. Transformation of “target
program that uses bit-fields into a semantically equivalent one
that does not use bit-fields” was performed. MAESTRO
“supports symbolic function pointers by identifying the
candidate functions of a symbolic function pointer through
static analysis”. Experiments showed that their framework
achieved 94.2% branch coverage and 82.3% MC/DC coverage

 - 177 -

on the four target modules. It significantly decreased coverage
testing cost through reduction of manual coverage testing
effort by 58.8%. They concluded that “MAESTRO can
achieve high test coverage for automotive software with
significantly reduced manual testing effort” [27].

Mobile app’s marketplace is characterized by strong
competition [28], [29]. Therefore, creating high-quality mobile
apps [28], [29] in short release cycles [28] and maintaining
them [29] is necessary to ensure their commercial success and
acquire new users [29].

Therefore, characteristics of mobile apps were extracted to
define efficient and effective testing suitable for mobile apps
[30]. One research showed that modifications due to changes
in GUI occurred in 55% of modified test methods,
modifications related to changes in test logic were registered
in 35% and adaptations to modified application logic occurred
in 27% of cases. These findings should help developers avoid
fragility and reduce maintenance costs for automated test
suites for Android apps [31].

TOOGLE was developed to automatically derive visual
tests from “existing layout-based counterparts” or repair them
when graphical changes happen. Script portability rose to
93%, while translation could repair up to 90% of visual
locators in failing tests [32].

3 hybrid apps were tested on 5 different mobile devices
and while manual testing showed correct functioning of tested
features, automated testing showed differences between
platforms [33]. A SLR conducted in [34] found 29 studies in
the field of automated testing, which were classified according
to testing techniques – the most common was model-based
testing (8 studies).

To detect and repair bugs rapidly, researchers and
practitioners propose tools for automating test process [28],
[29]. But, these tools generate redundant and random inputs
that lack “contextual information” and generate “reports
difficult to analyze” [28]. These inputs are also insufficient for
properly simulating human behavior, thus “leaving feature and
crash bugs undetected until they are encountered by users”
[29].

Since users can “provide contextual details about errors or
exceptions detected by automated testing tools”, this enables
detecting bugs that would remain uncovered if teams would
only rely on testing tools. Therefore, incorporating user
feedback into testing is important [29] and BECLOMA - a
tool for integrating user feedback in testing mobile apps was
proposed in [28]. Connection between testing tools
information and user reviews provided developers a more
detailed testing report, which combined “stack traces with user
reviews information referring to the same crash”. Therefore,
the tool facilitated diagnosis and fixing bugs and eased “the
usage of testing tools” and automated “analysis of user
reviews from the Google Play Store” [28].

Automating software testing is important, because it
reduces test repair effort [35], so a SLR of test breakage
prevention and repair techniques was conducted and level of
automation of these techniques (manual, semi-automated and
automated) was also investigated. A technique was classified

as automated if it automatically detected “occurrence of
breakages”, automatically generated “potential test fixes,
while validation of potential fixes may” have been manual. 12
papers (30%) from the SLR were focused on automation of
test case repair. It was argued that there were very little or no
evidence on efficiency of manual, semi-automated and
automated techniques. Without evidence, it was questionable
whether it was more efficient to repair or write new test cases
which made practitioners reluctant in accepting these
techniques [35].

Test smells, as poorly designed tests, negatively affect test
and code quality, so a SLR was conducted in [36]. It was
argued that practitioners often lacked skills for writing
automated test scripts, which led to variety of smells; that
practitioners were the ones interested in discovering new
smells; that detection of 6 fixture-related smells (general
fixture, test maverick, lack of cohesion of test methods, dead
field, vague header setup, and obscure in-line setup) was
automated and that there were metrics that indicated existence
of smells.

Environment is changing quickly and for faster software
delivery, other parts of the IT department are also crucial. So,
authors in [37] argued that skills required for successfully
implementing DevOps in an IT team were not enough
empirically researched. They identified 36 skills and
categorized them in 7 groups (full-stack development,
analysis, functional, decision-making, social, testing and
advisory skills). It was argued that comprehensive testing
skills were needed in an ideal DevOps team [37].

A non-traditional computing mechanism – chemical
reaction networks were used to develop ChemTest which
“evaluates test oracles on individual simulation traces and
supports functional, metamorphic, internal and hyper test
cases. It also allows for flakiness and programs that are
probabilistic”. Conducted case study showed that 21% of tests
were flaky; functional tests found 66.5%, while metamorphic
tests found 80.4% of faults [38].

In [39], focus was on cloud quality testing and
development of strategy for automated SaaS testing in CSB
environment, while a novel cloud testing platform for software
testing was proposed in [40].

When failures occur, development team has to analyze, fix
and repair the problematic process, so process mining of
production process event logs was proposed to automatically
extract unit test cases in [41].

A framework (based on ISO/IEC /IEEE 291129 -2013
standard for software testing process and ISO/IEC /IEEE
291129 -2015 for software testing techniques) for automated
test case generation in gesture recognition systems was
developed in [9] and five parameters (rotation, contrast,
scaling, background and noise) were used to generate test
cases.

A technique for automated testing that supports white-box,
unit, assertion-based and exception testing and dead code was
developed and compared to commercial tools [42], while
comparison of automated regression tests with continuous
integration and manual testing was performed in [43]. General

 - 178 -

model for random and systematic testing, based on a set of
assumptions, was proposed in [44]. TAO (a testing tool) for
specifying and generating test cases and oracles in a
declarative way was proposed in [45], while automated testing
tools were divided into 6 categories based on testing type in
[46].

In [47], SLR showed that majority of investigated studies
applied automation in different aspects of testing (generation
and execution of test cases, test analysis); however, neither
study had fully automated testing process. Out of 15 factors,
that influence decision regarding automated testing, regression
testing, maturity and economic factors were very frequent,
although that did not reflect on their importance [48].

Answer to RQ4 (How are users, developers and managers
influenced by automated software testing?) is provided in the
following paragraphs. In automated testing, user feedback is
of at-most-importance, because they can provide developers
with detailed information regarding errors and exceptions
[28], [29], that would otherwise stay “bellow the radar” and
therefore jeopardize quality of the final product.

On the other hand, majority of developers and automated
testing do not go hand into hand. Firstly, [37] argues that, if
implementing DevOps, a comprehensive set of testing skills
(36 skills) is needed. Secondly, according to [36], majority of
developers lack skills for writing automated test scripts, which
leads to a vast number of test smells that distort the quality of
the final product. However, those developers are the ones with
the highest interest in discovering new smells. Thirdly, since
automated test case repair techniques lack evidence to support
their efficiency, developers are reluctant in accepting them
[35].

Managers are always focused on the business side of
automated testing – resources and the final product. They want
high quality product with minimal human effort, decreased
costs and shorter time to market, since all of the above are
necessary conditions for being competitive and becoming a
leader. Automated testing has the potential for reusability [2],
[46], decrease in time [2], [46], and cost [2], [5], [25], [31],
higher quality [25], [26], [27], shorter time to market [25] and
reduced human effort [26], [27], so managers are particularly
interested in applying automation in software testing.

IV. CONCLUSION

Testing, as a stage in development process, is vital for
producing high quality software. With the proliferation of
software in every aspect of our lives, its high quality is of at-
most-importance, especially in safety-critical systems e.g.
healthcare, automotive industry, avionics. Thus, a SLR, that
aimed to provide a summary of knowledge regarding this topic,
was conducted and 46 papers were in focus of this research.

Research results have led to several conclusions. Majority
of sources proposed traditional testing techniques, while only 1
proposed chemical reaction networks (a non-traditional
computing mechanism). Automated testing is present in
automotive industry, embedded systems, mobile apps, web,
IoT etc.

Most developers do not properly automate test scripts,
which leads to smells and poor test and code quality, although
they are interested in discovering new smells. Without
evidence of efficiency of automated repair techniques, they are
reluctant in accepting them. Users can provide developers
important, detailed information regarding defects, which would
not have been noticed just with test tools. Managers are
focused on potential savings in time, effort and money
automated testing could offer.

Despite many benefits automated software testing has to
offer, managers need to have in mind that automation also has
disadvantages, and therefore, has to be carefully conducted, i.e.
benefits have to be higher than costs. It can be expected that
automation will continue to expand, but in certain
circumstances, it will not eliminate manual testing.

REFERENCES

[1] M. Dadkhah, S. Araban and S. Paydar, “A systematic literature review
on semantic web enabled software testing”, Journal of Systems and
Software, vol. 162, 2020.

[2] M. Padmanabhan, "A Study on Transaction Specification based
Software Testing for Internet of Things," 2018 International Conference
on Current Trends towards Converging Technologies (ICCTCT),
Coimbatore, 2018, pp. 1-6, doi: 10.1109/ICCTCT.2018.8550926.

[3] D. Ghosh and J. Singh, “Spectrum-based multi-fault localization using
Chaotic Genetic Algorithm”, Information and Software Technology,
vol.133, 2021.

[4] M. M. D. Shahabi, S. P. Badiei, S. E. Beheshtian, R. Akbari and S. M.
R. Moosavi, "On the performance of EvoPSO: A PSO based algorithm
for test data generation in EvoSuite," 2017 2nd Conference on Swarm
Intelligence and Evolutionary Computation (CSIEC), Kerman, 2017, pp.
129-134, doi: 10.1109/CSIEC.2017.7940170.

[5] H. L. P. Raj and K. Chandrasekaran, "NEAT Algorithm for Testsuite
generation in Automated Software Testing," 2018 IEEE Symposium
Series on Computational Intelligence (SSCI), Bangalore, India, 2018, pp.
2361-2368, doi: 10.1109/SSCI.2018.8628668.

[6] R. Ramler, C. Klammer and G. Buchgeher, "Applying Automated Test
Case Generation in Industry: A Retrospective," 2018 IEEE International
Conference on Software Testing, Verification and Validation Workshops
(ICSTW), Västerås, Sweden, 2018, pp. 364-369, doi:
10.1109/ICSTW.2018.00074.

[7] B. Kitchenham, “Procedures for Performing Systematic Reviews”, Joint
Technical Report, Computer Science Department, Keele University
(TR/SE-0401) and National ICT AustraliaLtd. (0400011T.1), 2004.

[8] A. A. Khan, J. Keung, M. Niazi, S. Hussain, and H. Zhang, “Systematic
Literature Reviews of Software Process Improvement: A Tertiary
Study”, EuroSPI 2017, CCIS 748, pp. 177–190, 2017.

[9] S. M. Hasan, M. Saiful Islam, M. Ashaduzzaman and M. A. Rahaman,
"Automated Software Testing Cases Generation Framework to Ensure
the Efficiency of the Gesture Recognition Systems," 2019 22nd
International Conference on Computer and Information Technology
(ICCIT), Dhaka, Bangladesh, 2019, pp. 1-6, doi:
10.1109/ICCIT48885.2019.9038214.

[10] A. Sivaji et al., "Software Testing Automation: A Comparative Study on
Productivity Rate of Open Source Automated Software Testing Tools
For Smart Manufacturing," 2020 IEEE Conference on Open Systems
(ICOS), Kota Kinabalu, Malaysia, 2020, pp. 7-12, doi:
10.1109/ICOS50156.2020.9293650.

[11] D. Saharan, Y. Kumar and R. Rishi, "Analytical Study and
Implementation of Web Performance Testing Tools," 2018 International
Conference on Recent Innovations in Electrical, Electronics &
Communication Engineering (ICRIEECE), Bhubaneswar, India, 2018,
pp. 2370-2377, doi: 10.1109/ICRIEECE44171.2018.9008408.

[12] A. Martin-Lopez, "AI-Driven Web API Testing," 2020 IEEE/ACM 42nd
International Conference on Software Engineering: Companion

 - 179 -

Proceedings (ICSE-Companion), Seoul, Korea (South), 2020, pp. 202-
205.

[13] A. Rau, "Topic-Driven Testing," 2017 IEEE/ACM 39th International
Conference on Software Engineering Companion (ICSE-C), Buenos
Aires, 2017, pp. 409-412, doi: 10.1109/ICSE-C.2017.175.

[14] V. J. M. Manès et al., "The Art, Science, and Engineering of Fuzzing: A
Survey," in IEEE Transactions on Software Engineering, doi:
10.1109/TSE.2019.2946563.

[15] A. Amirante, T. Castaldi, L. Miniero, S. P. Romano, P. Saviano and A.
Toppi, "Fuzzing Janus for Fun and Profit," 2019 Principles, Systems and
Applications of IP Telecommunications (IPTComm), Chicago, IL, USA,
2019, pp. 1-7, doi: 10.1109/IPTCOMM.2019.8920918.

[16] V. Hatas, S. Sen and J. A. Clark, "Efficient Evolutionary Fuzzing for
Android Application Installation Process," 2019 IEEE 19th International
Conference on Software Quality, Reliability and Security (QRS), Sofia,
Bulgaria, 2019, pp. 62-68, doi: 10.1109/QRS.2019.00021.

[17] X. Nguyen, P. Nguyen and V. Nguyen, "Clustering Automation Test
Faults," 2019 11th International Conference on Knowledge and Systems
Engineering (KSE), Da Nang, Vietnam, 2019, pp. 1-7, doi:
10.1109/KSE.2019.8919435.

[18] L. Butgereit, "Using Machine Learning to Prioritize Automated Testing
in an Agile Environment," 2019 Conference on Information
Communications Technology and Society (ICTAS), Durban, South
Africa, 2019, pp. 1-6, doi: 10.1109/ICTAS.2019.8703639.

[19] G. Grano, T. V. Titov, S. Panichella and H. C. Gall, "How high will it
be? Using machine learning models to predict branch coverage in
automated testing," 2018 IEEE Workshop on Machine Learning
Techniques for Software Quality Evaluation (MaLTeSQuE),
Campobasso, 2018, pp. 19-24.

[20] M. Singh, V. M. Srivastava, K. Gaurav and P. K. Gupta, "Automatic test
data generation based on multi-objective ant lion optimization
algorithm," 2017 Pattern Recognition Association of South Africa and
Robotics and Mechatronics (PRASA-RobMech), Bloemfontein, 2017,
pp. 168-174, doi: 10.1109/RoboMech.2017.8261142.

[21] M. Mozgovoy, "Multiplatform Automated Software Testing: Personal
Experience of a Maintainer," 2019 4th International Conference and
Workshops on Recent Advances and Innovations in Engineering
(ICRAIE), Kedah, Malaysia, 2019, pp. 1-4,

[22] K. Cui, K. Zhou, H. Song and M. Li, "Automated Software Testing
Based on Hierarchical State Transition Matrix for Smart TV," in IEEE
Access, vol. 5, pp. 6492-6501, 2017.

[23] X. Han, N. Zhang, W. He, K. Zhang and L. Tang, "Automated Warship
Software Testing System Based on LoadRunner Automation API," 2018
IEEE International Conference on Software Quality, Reliability and
Security Companion (QRS-C), Lisbon, 2018, pp. 51-55.

[24] V. Garousi, M. Felderer, C. M. Karapıcak and U. Yılmaz, “Testing
embedded software: a survey of the literature”, Information and
Software Technology, vol. 104, pp. 14-45, 2018.

[25] D. Kumar and K. K. Mishra, “The Impacts of Test Automation on
Software’s Cost, Quality and Time to Market”, Procedia Computer
Science, vol. 79, pp. 8-15, 2016.

[26] Y. Kim, D. Lee, J. Baek and M. Kim, "Concolic Testing for High Test
Coverage and Reduced Human Effort in Automotive Industry," 2019
IEEE/ACM 41st International Conference on Software Engineering:
Software Engineering in Practice (ICSE-SEIP), Montreal, QC, Canada,
2019, pp. 151-160, doi: 10.1109/ICSE-SEIP.2019.00024.

[27] Y. Kim, D. Lee, J. Baek and M. Kim, “MAESTRO: Automated Test
Generation Framework for High Test Coverage and Reduced Human
Effort in Automotive Industry”, Information and Software Technology,
vol.123, 2020.

[28] L. Pelloni, G. Grano, A. Ciurumelea, S. Panichella, F. Palomba and H.
C. Gall, "BECLoMA: Augmenting stack traces with user review
information," 2018 IEEE 25th International Conference on Software
Analysis, Evolution and Reengineering (SANER), Campobasso, 2018,
pp. 522-526, doi: 10.1109/SANER.2018.8330252.

[29] G. Grano, A. Ciurumelea, S. Panichella, F. Palomba and H. C. Gall,
"Exploring the integration of user feedback in automated testing of
Android applications," 2018 IEEE 25th International Conference on

Software Analysis, Evolution and Reengineering (SANER), Campobasso,
2018, pp. 72-83, doi: 10.1109/SANER.2018.8330198.

[30] D. B. Silva, M. Medeiros Eler, V. H. S. Durelli and A. T. Endo,
“Characterizing mobile apps from a source and test code viewpoint”,
Information and Software Technology, vol. 101, pp. 32-50, 2018.

[31] R. Coppola, M. Morisio and M. Torchiano, "Maintenance of Android
Widget-Based GUI Testing: A Taxonomy of Test Case Modification
Causes," 2018 IEEE International Conference on Software Testing,
Verification and Validation Workshops (ICSTW), Västerås, Sweden,
2018, pp. 151-158, doi: 10.1109/ICSTW.2018.00044.

[32] R. Coppola, L. Ardito, M. Torchiano and E. Alégroth, “Translation from
layout-based to visual android test scripts: An empirical evaluation”,
Journal of Systems and Software, vol. 171, 2021.

[33] A. A. Menegassi and A. T. Endo, "An evaluation of automated tests for
hybrid mobile applications," 2016 XLII Latin American Computing
Conference (CLEI), Valparaiso, 2016, pp. 1-11, doi:
10.1109/CLEI.2016.7833337.

[34] S. Zein, N. Salleh and J. Grundy, “A Systematic Mapping Study of
Mobile Application Testing Techniques”, Journal of Systems and
Software, vol. 117, pp.334-356, 2016.

[35] J. Imtiaz, S. Sherin, M. U. Khan and M. Z. Iqbal, “A systematic
literature review of test breakage prevention and repair techniques”,
Information and Software Technology, vol. 113, pp.1-19, 2019.

[36] V. Garousi and B. Küçük, “Smells in software test code: A survey of
knowledge in industry and academia”, Journal of Systems and Software,
vol. 138, pp.52-81, 2018.

[37] A. Wiedemann and M. Wiesche, "Are you ready for DevOps? Required
skill set for DevOps teams", Research Papers, 123, 2018.

[38] M. C. Gerten, J. I. Lathrop, M. B. Cohen and T. H. Klinge, "ChemTest:
An Automated Software Testing Framework for an Emerging
Paradigm," 2020 35th IEEE/ACM International Conference on
Automated Software Engineering (ASE), Melbourne, Australia, 2020,
pp. 548-560.

[39] V. Paulsson, V. C. Emeakaroha, J. Morrison and T. Lynn, “Cloud
Service Brokerage: A systematic literature review using a software
development lifecycle”, Twenty-second Americas Conference on
Information Systems, San Diego, 2016.

[40] M. C. Calpur and C. Yilmaz, "Towards Having a Cloud of Mobile
Devices Specialized for Software Testing," 2016 IEEE/ACM
International Conference on Mobile Software Engineering and Systems
(MOBILESoft), Austin, TX, 2016, pp. 9-10, doi:
10.1109/MobileSoft.2016.014.

[41] D. Lübke, “Extracting and Conserving Production Data as Test Cases in
Executable Business Process Architectures”, Procedia Computer
Science, vol. 121, pp. 1006-1013, 2017.

[42] R. Khalid, "Towards an automated tool for software testing and
analysis," 2017 14th International Bhurban Conference on Applied
Sciences and Technology (IBCAST), Islamabad, 2017, pp. 461-465.

[43] J. Alberto, J. Oliveira, S. Reis, V. Cunha, S. Pelegrini and E. P. S.
Nunes, "Automação de Testes: Um Estudo de Caso", 2020, ISLA 2020
Proceedings, 8.

[44] M. Böhme and S. Paul, "A Probabilistic Analysis of the Efficiency of
Automated Software Testing," in IEEE Transactions on Software
Engineering, vol. 42, no. 4, pp. 345-360, 1 April 2016.

[45] H-F. Guo, “A Semantic Approach for Automated Test Oracle
Generation”, Computer Languages, Systems & Structures, vol. 45, pp.
204-219, 2016.

[46] S. K. Alferidah and S. Ahmed, "Automated Software Testing
Tools," 2020 International Conference on Computing and Information
Technology (ICCIT-1441), Tabuk, Saudi Arabia, 2020, pp. 1-4, doi:
10.1109/ICCIT-144147971.2020.9213735.

[47] B. Uzun and B. Tekinerdogan, “Model-Driven Architecture Based
Testing: A Systematic Literature Review”, Information and Software
Technology, vol. 102, pp. 30-48, 2018.

[48] V. Garousi and M. V. Mäntylä, “When and what to automate in software
testing? A multi-vocal literature review”, Information and Software
Technology, vol. 76, pp. 92-117, 2016.

