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Abstract - Testing is important in producing high quality software 

and can be done manually and/or automatically. Automation has 

potential to reduce testing effort (e.g. in developing test cases, 

generating test data) and speed up testing cycles. This paper aims 

to present state-of-the-art achievements in automated testing 

through its diverse application in practice and investigate how 

users, developers and managers are influenced by this 

phenomenon. Three scientific databases were chosen and the 

search resulted in 46 final papers. Majority of sources proposed 

traditional testing techniques, while one proposed chemical 

reaction networks. Although automation is present in developing 

mobile apps, embedded systems, automotive industry etc., most 

developers do not properly automate testing. Two sources 

marked user reviews as important, while managers are drawn to 

potential savings in time, effort and money. 
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I.  INTRODUCTION 

With the proliferation of software in every aspect of our 
lives, its high quality is of at-most-importance, especially in 
safety-critical systems e.g. in healthcare, automotive industry, 
avionics. Software testing, as an important verification and 
validation activity [1], ensures that the demanded quality is 
achieved through detection and removal of bugs/defects [2]. 

On the other hand, proliferation has also led to increase in 
software’s size and complexity [3], so testing software of that 
magnitude consumes a lot of time and effort [3] and up to 50% 
of total software project costs are related to testing [4], [5]. 

Since automated software testing has potential to reduce 
high effort invested in “manually developing and maintaining 
test cases” [6], decrease costs [4], improve testing 
effectiveness [4], [6] and speed-up testing cycles [6], there has 
been an increase in interest regarding automation of software 
testing [4]. Therefore, research in this field has advanced over 
the years, which has resulted in developing a wide range of 
available testing techniques and tools [6].  

After the Introduction, the rest of the paper is structured as 
follows: Section II presents research methodology (research 

questions, chosen scientific databases, search strings, inclusion 
and exclusion criteria, and how the review was conducted); 
Section III extracts the review data and discusses findings, 
while conclusion is given in Section IV. 

II. RESEARCH METHODOLOGY 

Since systematic literature reviews (SLRs) are designed to 
provide detailed information about a specific phenomenon [7], 
they are becoming a vital part of scientific research [8]. SLRs 
also have to be fair and thorough [7], otherwise their scientific 
value will be questionable. They represent a mean of 
identification, evaluation and interpretation of available 
research [7] related to a topic of interest. A SLR consists of 
three main phases: planning a review, conducting a review and 
reporting review findings [7]. 

A. Planning the Review 

Since automation of software testing is becoming very 
important for both industry and academia, this SLR is focused 
on summarizing the available knowledge and identifying 
current trends in the area of automated software testing. 

1) Defining Research Questions: Based on the set 
objective, following research questions were constructed. 
RQ1: How many studies focused on automated software 
testing were published from 2016 till January 14th 2021? RQ2: 
What were the main topics discussed in these papers? RQ3: 
What are current trends in the area of automated software 
testing? RQ4: How are users, developers and managers 
influenced by automated software testing? 

2) Defining Search Strings for Scientific Databases: To 
provide answers to research questions, a SLR was conducted 
to identify topics and trends discussed in academia. Three 
electronic databases were chosen for conducting SLR: IEEE 
xplore, AIS eLibrary and Science Direct. Research string was 
set in the following way: “automated software testing” and 
applied in the above stated electronic databases. 

3) Defining Inclusion and Exclusion Criteria: Publishing 
period was set to last 6 years - from 2016 till January 14th 

2021, to collect the most recent research findings. Only papers 
published in journals and conferences were included in the 
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initial population. Grey literature (e.g. blog posts, white 
papers) did not enter the initial population. Only primary and 
secondary studies in the domain of automated software testing 
were examined. Language was not set as an obstacle for 
entering the initial population, although it may become one in 
the next stages (if title or abstract are not in English). 

B. Conducting the Review 

Advanced search was chosen in all databases. After 
applying search string and criteria “all fields” in AIS eLibrary, 
“all metadata” in IEEE xplore and “find articles with these 
terms” in Science Direct, search resulted in initial population of 
95 hits, structured in the following order: IEEE explore (29), 
AIS library (8) and Science Direct (58).  

Titles, keywords and abstracts were evaluated to ensure that 
a study is in function of answering research questions. All 
papers that were not in the field of interest were eliminated. 1 
paper had abstract in Portuguese and English and was relevant 
to SLR; 3 papers did not have full access [3], [5] and [9]. Only 
3 papers from AIS eLibrary, 29 from IEEE xplore and 14 from 
Science Direct entered the final population. Due to limited 
number of pages, extraction of results and discussion are joined 
into Section III. 

III. EXTRACTING RESULTS AND DISCUSSING FINDINGS 

Authors of this paper aimed to provide a summary of state-
of-the-art knowledge regarding automated software testing and 
investigate how users, developers and managers are involved in 
this process. Thus, a SLR was conducted and 46 papers were of 
interest for this research, which gives answer to RQ1 (How 
many studies focused on automated software testing were 
published from 2016 till January 14th 2021?).  

Findings, extracted from those studies, were categorized in 
groups based on the context in which automated software 
testing was presented and are discussed in the following 
paragraphs, thus providing answers for RQ2 (What were the 
main topics discussed in these papers?) and RQ3 (What are 
current trends in the area of automated software testing?). 

Software has become a part of our everyday life, which has 
led to increase in its size, complexity [3] and demand for its 
high quality has also risen. Consequently, testing effort has 
been increased and testing participates 50% in total project 
costs [4], [5]. Therefore, academia and industry have shifted 
focus towards potential benefits of automated software testing 
in various fields. 

Application of automated software testing on the Web was 
in focus of several papers. Since open source tools have 
potential for productivity savings, productivity of two open 
source automated testing tools, measured in time, was 
compared and time difference was significant [10]. This 
finding indicates that appropriate choice of testing tool could 
potentially decrease testing time.  

Testing web apps is not without difficulties - performance 
testing can be problematic due to unpredictable load, response 
time etc. [11]. Therefore, correlation of performances testing 
tools was done in terms of usability and performance 
parameters in [11]. 

To achieve high level of automation and thoroughness in 
testing of web API, artificial intelligence techniques were 
applied for autonomous software failure detection. Bots were 
used to generate test inputs and correctness of test outputs was 
evaluated through: “1) patterns learned from previous 
executions of the SUT” and “2) knowledge gained from 
analyzing thousands of similar programs”. Developed 
prototype automatically detected bugs in some real-world APIs 
[12].  

General instructions for manually testing Web sites are 
acceptable, but could those be automated? In order to automate 
these instructions, semantic usage patterns were presented in 
[13]. The model recorded “general topics behind the individual 
steps of interactions”. Models were extracted from existing test 
descriptions, regardless of their form i.e. they could either be in 
natural language or in the form of system tests. These patterns 
can also be applied for applications they were not designed for. 
Applications can be tested automatically for behavioral 
anomalies [13]. 

Software testing is also knowledge-intensive, so it could be 
improved by semantic web technologies, e.g., ontologies, 
“which have been frequently used in knowledge engineering 
activities” [1]. A SLR was conducted and benefits of using 
semantic web enabled software testing for industry and 
academia were presented; testing activities that would have use 
of these techniques were pointed out, as well as problems in 
application of semantic web enabled techniques [1]. 

Several sources were focused on fuzzing. Fuzzing is a 
popular [14] automated testing technique that “looks for 
vulnerabilities by causing crashes through the introduction of 
invalid, unexpected, or random data” as inputs and improves 
software’s robustness and security [15]. It possesses 
conceptual simplicity, deployment barriers are low and there is 
abundance of “empirical evidence” that fuzzing is effective in 
“discovering real-world software vulnerabilities” [14].  

Fuzzing was applied in [15] to test Janus WebRTC media 
server’s behavior, which allowed fixing several important 
software issues. A “unified, general-purpose model of fuzzing 
together with taxonomy of the current fuzzing literature” was 
presented in [14]. 

With the expansion of mobile devices, fuzz tests have been 
applied to mobile platforms as well. While most studies are 
focused on GUI and implementation at the application level 
[16], it was argued in [16] that detecting vulnerabilities in 
lower levels is important, especially since that would affect 
many Android users. Therefore, genetic algorithms for 
efficient fuzz testing for Android app installation process were 
proposed. Black-box fuzzing tool created “more unique 
crashes” in less time and detected new and existing bugs [16].  

Machine learning plays an important role in automated 
software testing. An automated text clustering approach with a 
semi-automated version for clustering errors in term of their 
root causes was proposed to save effort in triaging and fixing 
bugs. Applied approach outperformed other baseline methods 
for classification and clustering [17].  

Machine learning was also used to automatically prioritize 
test cases, based on the level of failure probability. Metrics 
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about software under test and historical commit messages 
were used for creating data file for generating decision trees in 
Weka. The model was used for prioritizing tests according to 
prediction where defects will occur [18].  

Achieving minimum level of coverage for every system 
build is desirable. However, executing all test cases and 
generating new ones for all classes for every commit is not 
feasible, so selection of subset of classes to be tested has to be 
made. “Knowing a priori the branch coverage that can be 
achieved with test data generation tools might give some 
useful indications” [19], so machine learning was used to 
develop models for predicting branch coverage that would be 
achieved by test data generation tools in [19].  

Multi-Objective Ant Lion Optimization algorithm resolved 
multi-objective optimization of coverage based test data. The 
algorithm was validated through comparison with random 
testing and conventional genetic algorithms [20].  

In [4], EvoPSO algorithm, which is based on swarm 
intelligence paradigm, was implemented in EvoSuite tool for 
test data generation. Its performance was evaluated on SFIIO 
dataset and it was showed that EvoPSO was efficient and 
competitive. 

Finding faults is complex and time consuming. So, many 
Spectrum Based Fault Localization techniques for automated 
fault localization in single-fault software have been developed. 
However, they are not always effective for multi-fault 
software [3]. Therefore, Chaos-based Genetic Algorithm for 
Multi-fault Localization based on Spectrum Based Fault 
Localization for automated fault localization in single and 
multi-fault programs was proposed. Suspicion for every 
program statement was calculated and ranked. Lower rank 
meant higher probability of a statement being faulty. 
Experiments showed that this technique outperformed 
Spectrum Based Fault Localization techniques [3].  

Neuroevolution of Augmenting Topologies algorithm was 
applied for automated generation of new test suits or coverage 
improvement of existing test suits. Test suites were 
automatically generated for white box testing [5]. 

Testing automation is important in different areas of 
industry. Automated test case generation in practice and 
research was analyzed and “lessons learned from transferring 
software testing research results to industry” were presented in 
[6]. Experience in automated smoke testing in a cross-platform 
game application was presented with “specific details and 
challenges associated with setting up and maintenance of day-
to-day automated testing activities” in [21].  

Automated testing method for improving testing efficiency 
for smart TV was proposed in [22]. Test platform was 
“designed to send the python script to the Android smart TV 
automatically through its Android debug bridge interface”. 
Their method reduced testing time and more errors were 
tested, when compared to manual testing [22]. Architecture for 
automated warship software testing was proposed in [23]. 

Automation is highly present in embedded systems. 
Therefore, authors in [24] conducted a SLR. Many approaches 
were presented. E.g. black-box testing for embedded software 

with specific test automation tool was conducted. Automated 
test input generation in Java for embedded device was 
evaluated. A search-based approach for automated model-in-
the-loop testing of continuous controllers was presented. An 
automated approach for test suites reduction was presented. 
For one embedded system, automation of test case generation 
with the help of Genetic algorithms was applied. Authors of 
[24] stated that automation can be successfully applied not just 
in execution of test cases, but in test case design and test 
evaluation as well. 

A method for automated testing analysis for IoT was 
proposed in [2]. If automated, software testing for IoT enables 
test reusability and repeatability, thus decreasing test coverage 
cost and time. Authors compared “automated software testing 
for IoT transactions and system peripherals such as sensor, 
DMA controller, internal counters, physical layer, and virtual 
layer using IoT specification based software testing” [2]. 

Software testing, as a time consuming task, should be 
automated, since that could shorten development time. 
Although automation has its advantages and disadvantages, 
management is especially interested in automation’s effects on 
software’s cost, quality and time [25], so authors in [25] 
investigated critical factors related to cost and return of/from 
automation, which is a very expensive activity. Three different 
software products were investigated and their experiments 
showed “positive effects of test automation on cost, quality 
and time to market”.  

Automotive software has gained importance, due to 
software’s role in controlling vehicles (e.g. “window 
controller, smart-key system, and tire pressure monitoring 
system”). Thus, human effort in testing automated software is 
quite high and, consequently, the industry is focused on 
finding ways to ensure that automotive software is of the 
highest quality, but with reduced human effort [26]. Authors 
applied concolic testing for automotive software developed by 
Hyundai Mobis in [26]. They developed a framework MAIST 
“that automatically generates the test driver, stubs and test 
inputs to a target task”. In concolic testing, MAIST achieved 
90.5% branch coverage and 77.8% MC/DC coverage on the 
integrated body unit (IBU) software. It also reduced the cost of 
IBU coverage testing through reducing the manual testing for 
coverage testing by 53.3%. 

The same group of authors ( from [26]) conducted a new 
study arguing that applying automated test generation in 
automotive software is “technically challenging because of 
false alarms caused by imprecise test drivers/stubs and lack of 
tool supports for symbolic analysis of bit-fields and function 
pointers in C” [27]. So, they developed MAESTRO - an 
automated testing framework. Test driver and stubs for a 
target task were built automatically, after which test inputs 
were generated and concolic testing and fuzzing were applied 
together in an adaptive way. Transformation of “target 
program that uses bit-fields into a semantically equivalent one 
that does not use bit-fields” was performed. MAESTRO 
“supports symbolic function pointers by identifying the 
candidate functions of a symbolic function pointer through 
static analysis”. Experiments showed that their framework 
achieved 94.2% branch coverage and 82.3% MC/DC coverage 
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on the four target modules. It significantly decreased coverage 
testing cost through reduction of manual coverage testing 
effort by 58.8%. They concluded that “MAESTRO can 
achieve high test coverage for automotive software with 
significantly reduced manual testing effort” [27]. 

Mobile app’s marketplace is characterized by strong 
competition [28], [29]. Therefore, creating high-quality mobile 
apps [28], [29] in short release cycles [28] and maintaining 
them [29] is necessary to ensure their commercial success and 
acquire new users [29]. 

Therefore, characteristics of mobile apps were extracted to 
define efficient and effective testing suitable for mobile apps 
[30]. One research showed that modifications due to changes 
in GUI occurred in 55% of modified test methods, 
modifications related to changes in test logic were registered 
in 35% and adaptations to modified application logic occurred 
in 27% of cases. These findings should help developers avoid 
fragility and reduce maintenance costs for automated test 
suites for Android apps [31].  

TOOGLE was developed to automatically derive visual 
tests from “existing layout-based counterparts” or repair them 
when graphical changes happen. Script portability rose to 
93%, while translation could repair up to 90% of visual 
locators in failing tests [32].  

3 hybrid apps were tested on 5 different mobile devices 
and while manual testing showed correct functioning of tested 
features, automated testing showed differences between 
platforms [33]. A SLR conducted in [34] found 29 studies in 
the field of automated testing, which were classified according 
to testing techniques – the most common was model-based 
testing (8 studies). 

To detect and repair bugs rapidly, researchers and 
practitioners propose tools for automating test process [28], 
[29]. But, these tools generate redundant and random inputs 
that lack “contextual information” and generate “reports 
difficult to analyze” [28]. These inputs are also insufficient for 
properly simulating human behavior, thus “leaving feature and 
crash bugs undetected until they are encountered by users” 
[29]. 

Since users can “provide contextual details about errors or 
exceptions detected by automated testing tools”, this enables 
detecting bugs that would remain uncovered if teams would 
only rely on testing tools. Therefore, incorporating user 
feedback into testing is important [29] and BECLOMA - a 
tool for integrating user feedback in testing mobile apps was 
proposed in [28]. Connection between testing tools 
information and user reviews provided developers a more 
detailed testing report, which combined “stack traces with user 
reviews information referring to the same crash”. Therefore, 
the tool facilitated diagnosis and fixing bugs and eased “the 
usage of testing tools” and automated “analysis of user 
reviews from the Google Play Store” [28].  

Automating software testing is important, because it 
reduces test repair effort [35], so a SLR of test breakage 
prevention and repair techniques was conducted and level of 
automation of these techniques (manual, semi-automated and 
automated) was also investigated. A technique was classified 

as automated if it automatically detected “occurrence of 
breakages”, automatically generated “potential test fixes, 
while validation of potential fixes may” have been manual. 12 
papers (30%) from the SLR were focused on automation of 
test case repair. It was argued that there were very little or no 
evidence on efficiency of manual, semi-automated and 
automated techniques. Without evidence, it was questionable 
whether it was more efficient to repair or write new test cases 
which made practitioners reluctant in accepting these 
techniques [35].  

Test smells, as poorly designed tests, negatively affect test 
and code quality, so a SLR was conducted in [36]. It was 
argued that practitioners often lacked skills for writing 
automated test scripts, which led to variety of smells; that 
practitioners were the ones interested in discovering new 
smells; that detection of 6 fixture-related smells (general 
fixture, test maverick, lack of cohesion of test methods, dead 
field, vague header setup, and obscure in-line setup) was 
automated and that there were metrics that indicated existence 
of smells.  

Environment is changing quickly and for faster software 
delivery, other parts of the IT department are also crucial. So, 
authors in [37] argued that skills required for successfully 
implementing DevOps in an IT team were not enough 
empirically researched. They identified 36 skills and 
categorized them in 7 groups (full-stack development, 
analysis, functional, decision-making, social, testing and 
advisory skills). It was argued that comprehensive testing 
skills were needed in an ideal DevOps team [37].  

A non-traditional computing mechanism – chemical 
reaction networks were used to develop ChemTest which 
“evaluates test oracles on individual simulation traces and 
supports functional, metamorphic, internal and hyper test 
cases. It also allows for flakiness and programs that are 
probabilistic”. Conducted case study showed that 21% of tests 
were flaky; functional tests found 66.5%, while metamorphic 
tests found 80.4% of faults [38].  

In [39], focus was on cloud quality testing and 
development of strategy for automated SaaS testing in CSB 
environment, while a novel cloud testing platform for software 
testing was proposed in [40].  

When failures occur, development team has to analyze, fix 
and repair the problematic process, so process mining of 
production process event logs was proposed to automatically 
extract unit test cases in [41].  

A framework (based on ISO/IEC /IEEE 291129 -2013 
standard for software testing process and ISO/IEC /IEEE 
291129 -2015 for software testing techniques) for automated 
test case generation in gesture recognition systems was 
developed in [9] and five parameters (rotation, contrast, 
scaling, background and noise) were used to generate test 
cases. 

A technique for automated testing that supports white-box, 
unit, assertion-based and exception testing and dead code was 
developed and compared to commercial tools [42], while 
comparison of automated regression tests with continuous 
integration and manual testing was performed in [43]. General 
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model for random and systematic testing, based on a set of 
assumptions, was proposed in [44]. TAO (a testing tool) for 
specifying and generating test cases and oracles in a 
declarative way was proposed in [45], while automated testing 
tools were divided into 6 categories based on testing type in 
[46].  

In [47], SLR showed that majority of investigated studies 
applied automation in different aspects of testing (generation 
and execution of test cases, test analysis); however, neither 
study had fully automated testing process. Out of 15 factors, 
that influence decision regarding automated testing, regression 
testing, maturity and economic factors were very frequent, 
although that did not reflect on their importance [48]. 

Answer to RQ4 (How are users, developers and managers 
influenced by automated software testing?) is provided in the 
following paragraphs. In automated testing, user feedback is 
of at-most-importance, because they can provide developers 
with detailed information regarding errors and exceptions 
[28], [29], that would otherwise stay “bellow the radar” and 
therefore jeopardize quality of the final product.  

On the other hand, majority of developers and automated 
testing do not go hand into hand. Firstly, [37] argues that, if 
implementing DevOps, a comprehensive set of testing skills 
(36 skills) is needed. Secondly, according to [36], majority of 
developers lack skills for writing automated test scripts, which 
leads to a vast number of test smells that distort the quality of 
the final product. However, those developers are the ones with 
the highest interest in discovering new smells. Thirdly, since 
automated test case repair techniques lack evidence to support 
their efficiency, developers are reluctant in accepting them 
[35]. 

Managers are always focused on the business side of 
automated testing – resources and the final product. They want 
high quality product with minimal human effort, decreased 
costs and shorter time to market, since all of the above are 
necessary conditions for being competitive and becoming a 
leader. Automated testing has the potential for reusability [2],  
[46], decrease in time [2], [46], and cost [2], [5], [25], [31], 
higher quality [25], [26], [27], shorter time to market [25] and 
reduced human effort [26], [27], so managers are particularly 
interested in applying automation in software testing. 

IV. CONCLUSION 

Testing, as a stage in development process, is vital for 
producing high quality software. With the proliferation of 
software in every aspect of our lives, its high quality is of at-
most-importance, especially in safety-critical systems e.g. 
healthcare, automotive industry, avionics. Thus, a SLR, that 
aimed to provide a summary of knowledge regarding this topic, 
was conducted and 46 papers were in focus of this research. 

Research results have led to several conclusions. Majority 
of sources proposed traditional testing techniques, while only 1 
proposed chemical reaction networks (a non-traditional 
computing mechanism). Automated testing is present in 
automotive industry, embedded systems, mobile apps, web, 
IoT etc.  

Most developers do not properly automate test scripts, 
which leads to smells and poor test and code quality, although 
they are interested in discovering new smells. Without 
evidence of efficiency of automated repair techniques, they are 
reluctant in accepting them. Users can provide developers 
important, detailed information regarding defects, which would 
not have been noticed just with test tools. Managers are 
focused on potential savings in time, effort and money 
automated testing could offer.  

Despite many benefits automated software testing has to 
offer, managers need to have in mind that automation also has 
disadvantages, and therefore, has to be carefully conducted, i.e. 
benefits have to be higher than costs. It can be expected that 
automation will continue to expand, but in certain 
circumstances, it will not eliminate manual testing.  
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