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Abstract — This paper proposes approach for prediction of 

wireless channel conditions of single-input single-output (SISO) 

systems in microcellular and picocellular environments using 

Kernel based Extreme Learning Machines (K-ELM). For 

evaluation of prediction quality normalized mean squared error 

(NMSE) and execution time are used. The simulation results 

show high prediction quality and short computing time of the K-

ELM prediction model on measured values for the signal-to-noise 

ratio (SNR). 
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I.  INTRODUCTION 

Nowadays, wireless channel state prediction is even more 
important, because of increasing demands for high-data 
services and limited wireless spectrum. The enhancement of 
system performance can be achieved by using the channel 
prediction, instead of using the channel estimation [1]. 
Moreover, wireless channel state rapidly changes, so the 
channel state obtained by channel estimation can easily become 
outdated.  

Many papers recently using prediction techniques instead 
estimation for channel states prediction. Autoregressive (AR) 
model, support vector machine (SVM), discrete wavelet 
transform (DWT) method in combination with AR and linear 
regression (LR) algorithm (DWT-AR-LR), echo state network 
(ESN) and extreme learning machines (ELM) are widely used 
in [2]-[8].  

In this paper we propose Kernel based Extreme Learning 

Machines (K-ELM) model [9]-[10] for prediction of wireless 

channel conditions single-input single-output (SISO) systems 

in microcellular and picocellular environments, as an 

alternative to the often-used SVM model. The SVM training is 

based on solving the quadric programming problem, which is 

time consuming when dealing with large training set. Beside 

that SVMs are initially proposed for binary classification, and 

then reformulated for regression. On the other hand, K-ELM 

has the unique formulation for binary classification, multi 

class classification and regression. The model often shows 

better generalization performances and reduced training time, 

compared with SVM [10].  

This paper proposes prediction model based on K-ELM for 
microcellular and picocellular environments. Data used for 
experiments consist of measured signal-to-noise ratio (SNR) 
samples used in [11]. Normalized mean squared error (NMSE) 
and the execution time are used for model evaluation. 

The rest of the paper is organized as follows. Section II 
presents theory of K-ELM. Section III presents communication 
scenario, data sets and K-ELM model. The simulation results 
are discussed in Section IV, while Section V presents 
conclusion. 

II. KERNEL BASED EXTREME LEARNING MACHINES (K-

ELM) 

Let us define N training examples as (xj, yj) where xj = [xj1, 

xj2, ...,  xjn]T ∊ Rn denotes j-th training instance of dimension n 

and yj = [yj1, yj2, ... , yjm]T ∊ Rm represents j-th training label of 

dimension m, where m is the number of classes. K-ELM has 

the unified solutions for regression, binary and multiclass 

classification. In the case of regression, which is of interest for 

problem considered in this paper, it holds that m=1 [10]. 

Single hidden layer feedforward neural network (SLFN) with 

the activation function h(x) and L hidden neurons could be 

defined as: 
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where wi = [wi1, wi2, ... , win]T denotes the vector of weights 

which connects the ith hidden neuron and all input neurons, βi 

= [βi1, βi2, ... , βim]T is the weight vector which connects ith 

hidden neuron and all output neurons, and bi is the bias of the 

ith hidden neuron. By ELM theory [9], wi and bi can be 

assigned in advance randomly and independently, without a 

priori knowledge of the input data. The ELM network 

structure is presented in Figure 1. 

SLFN in (1) should satisfy
1

0
L

i ii
  f y , i.e., there 

exist βi, wi and bi such that: 
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Fig. 1. Structure of an ELM network. 

 

The equivalent compact matrix form of (2) can be written 

as 

 H Y  (3) 

where H in (3) represents the hidden layer output matrix of the 

neural network; the ith column of H represents the ith hidden 

neuron’s output vector in regard to inputs x1, x2, ..., xN.   
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and 
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Although the output weights can be analytically determined 

by finding the unique smallest norm least-squares solution of 

the linear system (3), the constrained optimization problem 

can be formed as in [10]: 
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where 1,...,
T

j j jm      is the training vector of the m 

output nodes with respect to the training sample xi, while C 

represents the tradeoff parameter between the model 

complexity and allowed errors j  during the training. Based 

on Karush - Kuhn -Tucker (KKT) theorem, the optimization 

problem defined in (6) is equivalent of solving the dual 

optimization problem: 
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(7) 

where 1,...,
T

j j jm      are Lagrange multipliers. 

After solving (7) based on KKT conditions, which can be 

found in detail in [10], the following solution is obtained: 
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and the decision function of ELM is: 
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(9) 

 If feature mapping h(x) is unknown, we can apply 

Mercer’s condition on ELM. We can define the kernel matrix 

for ELM as: 
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 In ELM 
T

T T

1( ) ( )H Nh h   Kx x  represents 

hidden layer output matrix which maps data xi from the input 

space to the hidden layer feature space and it is irrelevant to 

target values yi and number of output nodes m. The kernel 

matrix 
T

HHELM  is related only to input data xi and the 

number of training samples N, for regression, binary 

classification and multi class classification. 

 Then, the output function of K-ELM (9) can be written 

compactly as: 
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 In this case the feature mapping h(x) does not need to be 

defined by users, as well as the dimensionality of the feature 

space L (number of hidden nodes), just its kernel K(u,v). In 

our experiments Radial basis function (RBF) is used as a 

kernel, defined as: 

 2
( , ) exp( )K   u v u v  (12) 

where   represents parameter of Gaussian kernel. It can be 

noted from (11) and (12) that optimal combination of 

parameters C and  have to be obtained in order to achieve 

good generalization performance. 

III. K-ELM PREDICTION MODEL  

The evaluation of the proposed K-ELM prediction model is 
performed for wireless communication system with a single 
transmit antenna and a single receive antenna (SISO) with two 
different channels, B and E. 

B channel is related to a microcell environment where 
distance between a mobile station (MS) and a base station (BS) 
is in the order of 30 m. It assumes indoor-to-outdoor 
propagation with BS located outside and indoor environment 
usually consisted of several small offices. 

E channel is related to indoor-to-indoor scenario. It 
represents a picocell environment in modern open office with 
windows metallically shielded. 

Let T and N denote sampling interval and total number of 
samples, respectively. Data used for simulation contain values 
of SNR obtained based on measurement campaigns described 
in details in [11]. A series of SNR samples 

   , 1,x k x kT k N  , from [11], are used for K-ELM 

model formation. 

K-ELM prediction model is formed as follows: 

Training  

(a) Obtain optimal (C, σ) pair on training set, based on grid 

search and k-fold cross validation using eq. (11) and eq. 

(12);  

(b) Afterwards, compute ΩELM using eq. (10); 
 

Testing  

(a) Compute the prediction f(x) using eq. (11) and eq. (12). 

IV. EXPERIMENTAL RESULTS 

NMSE is used as a prediction error metrics which is 
defined as 


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Data sets used to test the proposed method contain the 
measured instantaneous SNR values at the receiver side for 
both B and E channel model for the case when SNR at the 
transmitter side is 20 dB. Evaluation is performed using 
N=4000 samples. The data are divided into two equal sets for 
training and testing (Ntr=Nte=2000). Number of previous values 
used for predictions (lags) is set to 3, as proposed in [7]. RBF 
and linear kernel is used as kernel function. For the tests, K-
ELM library is used, publicly available in [12].  

In Fig. 1 and Fig. 2 target signal and prediction curve for 
both E and B channel are presented, respectively. Besides 
NMSE, which gives “one number” goodness of the fit, Fig. 1 
and Fig. 2 show that predicted values strictly follow shape and 
trend of the time series, for both E and B channel. 

The NMSE for test set is evaluated, as well as the training 
and the testing times measured in seconds, on an Ryzen 3 
3200G CPU with 16GB of RAM. Table I contains NMSE, the 
training time and the testing times in seconds for K-ELM 
model trained with RBF and the linear kernel. 

The obtained values of NMSE presented in Table I are in 
range of 0.01 to 0.003. In Table I, the training time is divided 
in two columns. Column denoted with Training time 1 
represents time needed for optimization of parameters (C, σ) on 
the training set by using the grid search and the k-fold cross 
validation procedure. Column denoted with Training time 2 
represents the time needed for computing ΩELM, once we know 
optimal (C, σ) pair. It should be noticed that in the most studies 
only Training time 2 is given, while Training time 1 is omitted, 
which gives optimistic assessment of training time. Test time is 
given in last column of Table I and it is in range of 0.007 to 
0.06 seconds.  

 

Figure 1.   Target signal and prediction curve for E channel 



 

 - 83 - 

 

Figure 2.   Target signal and prediction curve for B channel 

The obtained values of the NMSE for K-ELM, regardless 
of the kernel used, are within the expected range of precision 
and comparable to the results obtained in other studies [5]-[8]. 

In order to compare the results of the K-ELM with other 
commonly used prediction techniques, we have measured 
accuracy of the ANNs and random forest (RF) on the same 
dataset. NMSE for ANNs was 0.0104 for E channel and 0.0058 
for B channel, while NMSE for RF reached 0.0093 for E 
channel and 0.0049 for B channel. It can be noticed that RBF 
kernel K-ELM slightly outperforms ANNs and RF in terms of 
NMSE, having the similar algorithm complexity. 

TABLE I.  TIME CONSUMPTION OF THE K-ELM MODEL 

Kernel  Channel NMSE 
Training 

time 1 (s) 

Training 

time 2 (s) 

Test 

time (s) 

RBF E 0.0085 12.5667 0.1322 0.0624 

Linear E 0.0126 0.9290 0.0929 0.0077 

RBF B 0.0038 12.6149 0.1325 0.0629 

Linear B 0.0086 1.0530 0.1053 0.0116 

 

V. CONCLUSION 

In this paper, the application of K-ELM prediction model 
for SISO systems in microcellular and picocellular 

environments has been proposed. The effectiveness of the 
approach has been confirmed using NMSE along with 
execution time. The obtained results are in rank with the results 
obtained in other studies.  

Some future research could include detail analysis on how 
the training set selection and the feature selection influence on 
the prediction quality. 
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