
19th International Symposium INFOTEH-JAHORINA, 18-20 March 2020

Acceleration Of the CUDA Implementation of the
Grayscale and Negative Filters

Dzigal Dzemil
dept. of Computing and Informatics

Fac. of Electrical Engineering Sarajevo
Sarajevo, Bosnia and Herzegovina

ddzigal1@etf.unsa.ba

Hodo Midhat
dept. of Computing and Informatics

Fac. of Electrical Engineering Sarajevo
Sarajevo, Bosnia and Herzegovina

mhodo1@etf.unsa.ba

Begic Lejla
dept. of Computing and Informatics

Fac. of Electrical Engineering Sarajevo
Sarajevo, Bosnia and Herzegovina

lbegic1@etf.unsa.ba

Borovac Selma
dept. of Computing and Informatics

Fac. of Electrical Engineering Sarajevo
Sarajevo, Bosnia and Herzegovina

sborovac1@etf.unsa.ba

Nosovic Novica
dept. of Computing and Informatics

Fac. of Electrical Engineering Sarajevo
Sarajevo, Bosnia and Herzegovina

nnosovic@etf.unsa.ba

Abstract—Real-Time Image Processing is a difficult, labor-
expensive and challenging task using standard high-level Pro-
gramming Languages such as C, C++, Java, C# and oth-
ers. Compiler-level Optimisation ensures some acceleration of
execution, but for the usual uses of Image Processing, such
optimisations are not enough. Processors of the modern time
assign the use of HyperThreading and similar technologies, to
the extent that we can, without a reasonable doubt say that there
are no truly sequential programs. Thus the parallel software is
of the upmost importance to be written. After the optimal Work
Arrangement for every worker in the system, code and compiler-
level optimization should be implemented for the final goal of
having an optimal Parallel Implementation, code and compiler-
wise and work arrangement-wise. The methods presented in this
paper are new methods for computing Grayscale and Negative
filters which have been optimised in their code, using bit-wise
operators and Compiler Restrictions on their assumptions, unlike
other forms of optimization, and can be used for General Purpose
Image processing.

Keywords—Real-Time Image Processing, Compiler-level Op-
timisation, Work Arrangement, Parallel Cmplementation,
Grayscale Filter, Negative Filter, Bit-Wise Operators, Compiler
Restrictions General Purpose Image Processing

I. INTRODUCTION

For the use in speed cameras [1] , the Grayscale filter is used
as a preprocessing step in algorithms [2] in order to correctly
identify vehicle licence plates. Because standard programming
languages are sequential in nature, a parallel implementation
of these preprocessing steps is needed to ensure that the
feature of vehicle speed calculation of the speed camera is
minimally effected. In this paper, a parallel implementation of

The Grayscale filter using the CUDA environment is proposed,
as well as the comparison between the sequential and parallel
implementation in the sense of execution time, and the com-
parrison of execution time between the new proposed method
over the existing implementations in the CUDA environment
[2]. Code-level optimisation steps are also provided with the
explanation why they are implemented. The Negative filter
is used in standard image segmentation algorithms [3] for
the simple reason that most image segmentation algorithms
assume the background of an object it is trying to segment is
black and the foreground (as too the said object) is white. So
the Negative filter can be used to ease the segmentation of a
certain darker object with a bright background. Altough rare,
the Negative filter can be used for the purpose of enhancing
low-brightness images to be processed more easily, and is
generally used in this purpose in the field of Image Processing
[4]. Thus, the new method is proposed with the final goal of
having an open-source code usable by anyone that is optimized
to the extent shown in this paper.

II. RELATED WORK

A. Research in the field of Image Processing

Standardised filters such as Grayscale and Negative are
studied througout the years by a myriad of researchers [2]
[3] [4] [5] for their potential role in image processing. Some
of the related work is based only on processing still images,
but others on real-time video processing. Such is the purpose
this paper is trying to strive to.

-234-

B. Cuda implementations

In the paper [2], implementation of the Grayscale filter is
provided as is the implementation. What is important to keep
in mind is that the latest implementations and advances in the
optimisation of these two filters are not frequent nor up-to-date
to the latest hardware standards and new optimisation tech-
niques now available (not only for the parallel, but sequential
programming too). All of the related work is made on small
datasets, and the measurements that are proposed are used in
comparrison to our method. All of the hardware differences
are noted and is a thing to keep in mind when observing the
given results of our method.

C. Note on the performance figures

The authors urge the reader to keep in mind that the
difference between the performance of the GPU’s of 10 years
ago and a CPU’s of 10 years ago in respect to performance is
much more than the difference of performance of the average
CPU’s of today (2020) and the average GPU’s of today. The
results obtained in this paper are sufficient and to the extent
of exellent for real-time processing of images in the use of
Optical-Character-Recognition as the proposed method as a
preprocessing step.

III. OUR METHOD

Our methods are consisted of simple procedures both
for Grayscale and Negative filters. The Grayscale filter is
achieved by a pixel-wise operation described in equation 1.

PGrayscale(x, y) =
PRed(x, y) + PGreen(x, y) + Pblue(x, y)

3
(1)

And so, the Negative filter is also achieved by a pixel-wise
operation described in eq. 2.

PNegative,n(x, y) = 255− Pn(x, y) (2)

where n stands for the channel in question that can be
Red,Green or Blue. The Negative filter is achieved when eq.
2. is performed upon all channels for each pixel in the image.

A pseudocode that illustrates the functionallity of the two
proposed filters is given in the sequential implementation. The
pseudocode for the Grayscale and Negative filter are given in
a C-style pseudocode for the purpose of ease of reading, and
for the reader that wishes to implement our method to have an
easy way to do so. The pseudocode is given as two functions
implemented and whos mechanism of operation is as follows.
The Grayscale filter is calculated as an average value of the
R, G and B value of every pixel in the selected picture, saved
to a single value in an array that is to be converted back to a
single-channel image. The negative filter is calculated as the
value of R G and B subtracted from the number 255 and saved
to the corresponding R,G or B channels of the output image.
Pseudocode is as follows in the following programms for their
respective sequential implementation.

Listing 1. Pseudocode of the Grayscale filter
void c o n v e r t T o G r a y s c a l e
(unsigned char * i n p u t , unsigned char * o u t p u t ,
unsigned i n t i m g s i z e){

f o r (unsigned char *p = i n p u t , * pg = o u t p u t ;
p != i n p u t + i m g s i z e ;
p+= c h a n n e l s , pg += g r a y c h a n n e l s) {
*pg =(u i n t 8 t) ((* p +*(p +1)+*(p + 2)) * c o n s t a n t) ;
i f (c h a n n e l s == 4)

* (pg + 1) = *(p + 3) ;
}

}

Listing 2. Pseudocode of the Negative filter
void c o n v e r t T o N e g a t i v e
(unsigned char * i n p u t , unsigned char * o u t p u t ,
unsigned i n t i m g s i z e){

f o r (unsigned char *p = i n p u t , * pn = o u t p u t ;
p != i n p u t + i m g s i z e ;
p +=3 , pn +=3) {
pn =(u i n t 8 t)(255− p) ;
* (pn +1)=(u i n t 8 t)(255−*(p + 1)) ;
* (pn +2)=(u i n t 8 t)(255−*(p + 2)) ;
}

Both of the procedures are as described in the beginning of
the section. The next step is to analyse the granulation of
the problem and divide the problem into smaller problems
applicable to high level of parallelism. Note that in Image
Processing, the ideal of a parallel Image Processing algorithm
is of one that is in the form of ”1 Pixel, 1 Processing-
Element”. For small images, the ideal is obtainable. But, given
an image more than the capability of the given hardware, the
ideal is no longer valid. Thus, the algorithm must resort to
Thread-Switching. The CUDA environment is does not carry
the overhead of manual Thread-Switching, and the NVCC
compiler, as-is has a good mechanism of obtaining relatively
good figures of Thread-Switching, Context-Switching and
such technology exploitation to the level sufficient for this
paper.

The main kernel is optimised not only by the compiler
optimisation techniques, but unorthodox, cunning optimisation
techniques using bit-wise shifting operators >> and << for
division and multiplication. The use of constants is exploited
in the kernel also, as is the restrict command for the
use of forcing the compiler to not assume aliasing of the
pointers in the kernel. Also, exploitation of the local constant
cache is made in the code by declaring constant values for
every value in the kernel. This is due to the fact that only the
input gray image will be altered by the algorithm. The kernel
for the Grayscale and Negative filter are given in the next code
segments.

The code is written for CUDA 10.1 and/or 10.2 environment
and is given in the next listings in the form of their imple-
mentation. The code is also available at the author’s GitHub
account [6], as well as the sequential implementation. Keep in
mind that the global preprocessing directive for the constant
”constant” is given as #define constant 0.3333f;

-235-

Listing 3. Optimized CUDA kernel for the Grayscale filter
g l o b a l

g r a y s c a l e (c o n s t unsigned char *
r e s t r i c t i n p u t r g b ,

unsigned char *
r e s t r i c t i n p u t g r a y ,

c o n s t unsigned i n t r e s o l u t i o n) {

c o n s t unsigned i n t
o f f s e t = (b l o c k I d x . x* blockDim . x + t h r e a d I d x . x) ;

c o n s t unsigned i n t a = (o f f s e t << 1) + (o f f s e t) ;
c o n s t unsigned i n t b = a + 1 ;
c o n s t unsigned i n t c = a + 2 ;
c o n s t unsigned char a a = i n p u t r g b [a] ;
c o n s t unsigned char b b = i n p u t r g b [b] ;
c o n s t unsigned char c c = i n p u t r g b [c] ;
c o n s t unsigned i n t v a l = a a + b b + c c ;

i n p u t g r a y [o f f s e t] = v a l * c o n s t a n t ;

}

Listing 4. Optimized CUDA kernel for the Negative filter
g l o b a l

void n e g a t i v e (c o n s t unsigned char *
r e s t r i c t i n p u t r g b ,

unsigned char *
r e s t r i c t o u t p u t ,

c o n s t i n t r e s o l u t i o n) {

c o n s t unsigned i n t
o f f s e t = b l o c k I d x . x* blockDim . x + t h r e a d I d x . x ;
c o n s t unsigned i n t
a = (o f f s e t << 1) + (o f f s e t) ;

c o n s t unsigned i n t b = a + 1 ;
c o n s t unsigned i n t c = a + 2 ;
c o n s t unsigned i n t v a l 1 = 255 − i n p u t r g b [a] ;
c o n s t unsigned i n t v a l 2 = 255 − i n p u t r g b [b] ;
c o n s t unsigned i n t v a l 3 = 255 − i n p u t r g b [c] ;

o u t p u t [a] = v a l 1 ;
o u t p u t [b] = v a l 2 ;
o u t p u t [c] = v a l 3 ;

}

IV. RESULTS

Implementation and recording of the given algorithms and
their results is done on a Lenovo Legion, Y520 laptop with a
Core i5-7300HQ @2.5GHz, 8GB of DDR4 2400MHz RAM
and an NVidia GTX 1050M GPU. The computer is running
Windows 10 / Kali Linux, v. 2020.4 and is running the code
given in the repository [6]

The dataset that the performance of the proposed methods
is measured upon is the Corisian Fire Database [7] consisted
of a 1135 images at the time of writing this paper in color

of varying dimensions. For that reason, the Corisian Fire
Database is a very good dataset to test the performance of
the proposed methods. The time elapsed between the call to
the function of the filter to its end in the sequential implemen-
tation, as well as the elapsed time from the call to the kernel
on the device to its terminating is used as a valid time given
in milliseconds to calculate and compare the performance
gain on the parallel implementation of the algorithm. The
performance measurement of the kernel is implemented with
respect to NVidia’s documentation concerning the said subject
[8] . Starting with the Grayscale filter, being followed by the
Negative filter, a chart of computation time is given as well as
the chart of achieved speedup of parallel implementation over
sequential with respect to the number of pixels in a particular
image processed by the algorithms. A chart of execution time
for the kernel with respect to the number of assigned blocks to
the kernel over the whole dataset is given, implying the optimal
number of blocks to be assigned in a general use-case, where
the resolution of the given images is unknown. A conclusion
is given on the use of such a parallel implementation with
respect to the achieved performance gain and execution time
in general-use Image Processing algorithms.

Fig. 1. Execution time of Sequential Grayscale

Fig. 2. Execution time of Parallel Grayscale

Thus we conclude that the speedup plot of the Parallel
over Sequential implementation of the Grayscale filter of the
proposed method in this paper is given in figure 3. Note that
in fig. 3 and 1, fitted functions are provided that give a more

-236-

Fig. 3. Speedup of Parallel over Sequential Grayscale

intuitive insight into the meaning of the results. The fitted
functions for the figures 3 and 1 are provided in the forms
presented in the next equations.

ffitseq = −1717.2 + 1724.39 · e8.58·10
−9·x (3)

ffitspeedup = 50.43− 70.47 · e−
(x−42392613.71)2

2·147849.622 (4)

Note that the fitted functions are both exponential in nature,
but the parallel implementation function is approximately
linear in nature. Note that the fitted function in the fig. 3 gives a
good approximation of the adopted average speedup of 50.12.
Next, the graph of performance of the parallel implementation
of the algorithm in respect to the block dimensions is shown
Note that the figures 1 2 3 are made with the blockDim.x

Fig. 4. Execution time in respect to blockDims.x

parameter set at 256 which is one of the local minima of the
function displayed in figure 4. Thus concludes the analysis of
the Parallel Grayscale Filter.
The negative filter has many uses in Image Processing so a new
parallel method is proposed in this paper. Like the Grayscale
filter, for the Negative filter, a chart of computation time for the
sequential, parallel and the speedup between the two, where
the average speedup is 25.34.

Thus we conclude that the speedup plot of the Parallel over
Sequential implementation of the proposed method for the
Negative filter in this paper is given in fig. 7 As before, the
figure presented in fig. 4 holds true for the Negative Filter
as well, so the parameter blockDims.x is set to 256, as well.

Fig. 5. Execution time of Sequential Negative

Fig. 6. Execution time of Parallel Negative

Note that the figures 5 6 7 are made with the blockDim.x
parameter set at 256 which is one of the local minimi of the
function displayed in figure 4. Thus concludes the analysis of
the Parallel Negative Filter.
Some of the results of both filters are presented.

Fig. 7. Speedup of Parallel over Sequential Negative

V. CONCLUSION

In this paper, an optimisation for computing two basic filters
of Image processing are proposed. In the form of a parallel
implementation, using NVidia Graphics Processing Units, in
this paper, it is shown that such an implementation can lead
to a substantial amount of reduction of execution time of an
algorithm, thus ensuring a considerable amount of speedup.
A considerable amount of optimisation is needed to further
reduce the runtime of the parallel and likewise the sequential

-237-

execution of the algorithms. bit-wise shifting, constant vari-
able cache exploitation, compiler directives, Instruction-Level
Parallelism exploiting, constant exploiting, avoiding branching
and a myriad of similar Code-Level optimisation techniques
were needed in order to speed up the code even further than
the initial implementation. Why they are needed is because
of a tendency for a compiler to not assume anything, even
tough a problem that it assumes is going to happen has a very
low probability of actually happening. Thus the techniques
proposed in this paper are needed to evade imperatives of
unoptimized and assumptive compilers. The use of a such
parallel implementation is obvious in Computer Vision and
Image Processing. The proposed method in this paper is
consisted of parallel software, written for parallel hardware
which in and of itself allows for streaming of FHD (and more)
resolution in a frame rate akin to a minimum of 60 Frames
Per Second. This ensures maximum throughput and speed of
processing. The existing methods presented in [2] are identical
to the implementation in this paper and the results can be
reviewed in [6].

Fig. 8. Results of both filters 1

Fig. 9. Results of both filters 2

REFERENCES

[1] “Gatso speed cameras explained,” https://www.speedcamerasuk.com/gatso.htm,
2020.

[2] W. Diniz, A. Horta, E. Nobrega, and L. Ferreira, “Parallel implementation
of grayscale conversion in graphics hardware,” 11 2011.

[3] M. Saha, M. Darji, N. Patel, and D. Thakore, “Implementation of image
enhancement algorithms and recursive ray tracing using cuda,” Procedia
Computer Science, vol. 79, pp. 516–524, 12 2016.

[4] J. J. Tse, “Image processing with cuda,” pp. UNLV Theses, Dissertations,
Professional Papers, and Capstones. 1699., 2012.

[5] C. Ameli, “Parallel computing with cuda in image processing,” October
2017.

[6] H. B. B. Dzigal, “Cuda grayscale and negative implementation,”
https://github.com/ddzigal1/CUDA-Grayscale-and-Negative-
Implementation, 2019.

[7] T. Toulouse, L. Rossi, A. Campana, T. Celik, and M. Akhloufi, “Computer
vision for wildfire research: An evolving image dataset for processing and
analysis,” Fire Safety Journal, vol. 92, pp. 188–194, 07 2017.

[8] “Cuda toolkit documentation,” https://docs.nvidia.com/cuda/index.html,
November 2019.

-238-

