
19th International Symposium INFOTEH-JAHORINA, 18-20 March 2020

 - 119 -

Usage of Dependency Injection within different
frameworks

Marko Bojkić / Đorđe
Pržulj / Miroslav

Stefanović / Sonja Ristić
University of Novi Sad

Faculty of Technical Sciences
21000 Novi Sad, Serbia

E-mail: marko.bojkic@gmail.com/
przulj@uns.ac.rs/
mstef@uns.ac.rs/

sdristic@uns.ac.rs

Abstract—During the development of applications, it is de-

sirable to provide loose coupling of their components, so that
program could be flexible, testable and maintainable. Within this
paper, a design pattern is explained, which complies with the
above requirements. Dependency Injection (DI), as one of the
mechanisms for achieving the Inversion of Control (IoC)
principle, represents a design pattern by which a particular class
requires dependency on external sources, rather than creating it
itself. Also, the usage of DI within the two different frameworks is
presented, through the concrete examples presented in the code.
With its usage, the displayed code becomes much more flexible
and maintainable and eventually upgradable.

Key words – Inversion of Control; Dependency Injection;
Framework; Angular; Spring; Design pattern;

I. INTRODUCTION

An object-oriented paradigm implies that the real world (and even
every part of it, which we call the real system) is seen as an
organized set of connected objects, with established states and
behaviors, which, thanks to mutual interaction, achieve the
predetermined objectives of the functioning of the system. To
perform their operations, objects may depend on other objects.
Dependence is a case in which an object, which is an
instance of one class, requires an object, which is an
instance of another, not necessarily different, class, to execute
its functionality. A dependent object is responsible for managing
references to the objects with which it cooperates (its
dependencies) and for initialization of those dependencies. In
system bootstrap, the problem that can arise is that if the
dependency is not initialized, a reference that indicates the
dependence of the object will have a null value.

In software engineering, the design pattern is a repeatable
solution to the problem that most often occurs in software
design. The design pattern is not a complete design that can be
transformed directly into the code. This is a description or a
pattern for solving problems which can be used in many
different situations [1].

By using the DI design pattern, object are associated with
the instances of classes they are dependent on.

Framework is arrangement in which software provides
greater functionality that can be extended by additional user
written codes. Frameworks are a special case of software
libraries which present a reusable abstractions of code.

They are wrapped in a well-defined Application programming
interface (API).

Yet they contain some key distinguishing features that separate
them from common libraries. Usually, they are needed because they
may provide a great shortcut when developing applications, since they
contain a written and tested functionality.

Apart from Introduction and Conclusion, this paper is
organized as follows. In Section II a short review of related
work on subject of DI is given. A brief description to the
concepts of IoC and DI is given in the Section III. Different
cases of using DI design pattern within different frameworks, with
accompanying code examples, is given in Section IV.

II. RELATED WORK

In 2004, Martin Fowler has published an article about DI
pattern. In this article, it is highlighted that the former rush of
lightweight containers all had a common underlying pattern to how
they assembled service - the DI pattern. It is concluded that the DI
form is a good choice for creating classes that will be used in
multiple applications [2].

Maintainability is the ease with which a software system or
component can be modified. Modifications may include
extensions, porting to different computing systems or im-
provements. Flexibility, reusability, testability and integrability
contribute to modifiability, and therefore are defined as sub
attributes of maintainability [3].

In 2007, Razina E. and D. S. Janzen did a study on effects of
DI on maintainability [4]. This paper examines if the pattern of DI
significantly reduces dependencies of modules in a piece of
software, therefore making the software more maintainable. It is
highlighted that maintenance of a software product is a big
problem that often consumes 60% to 80% of the software life
cycle. This problem is familiar to software developers and has
existed for years. Even though a complete solution to this
problem does not exist, ways to measure code and predict
maintainability do exist. Some of the measures that predict
maintainability are coupling and cohesion metrics. The experiment
results were unable to substantiate this hypothesis. There does not
appear to be a trend in lower coupling or higher cohesion measures
with or without the presence of DI. However, a trend of lower
coupling in projects with higher DI percentage (more than 10 %)
was evident. Walls and Breidenbach state that using the pattern
of DI provides less coupled modules and code [5].

mailto:marko.bojkic@gmail.com
mailto:marko.bojkic@gmail.com
mailto:przulj@uns.ac.rs
mailto:mstef@uns.ac.rs
mailto:sdristic@uns.ac.rs

 - 120 -

public interface VehicleService {

public String transport();

}

@Service
public class CarService implements VehicleService {

@Override
public String transport(){

return "Car transport";
}

}

@Component
public class CarServiceDependent {

@Autowired
CarService service;

@Test
public void test() {

System.out.println(service.transport());
}

}

III. INVERSION OF CONTROL AND DEPENDENCY

INJECTION

IoC is a software engineering principle that transfers control over
objects or parts of a system to a container. It is most commonly
used in the context of object-oriented programming. The IoC
allows the framework to take control of the program execution
flow and sends calls to the written code. The benefits of using IoC
would be:

• easier transition between different implementations,
• greater modularity of the program,
• easier testing of the program by isolating its components.
IoC can be implemented using a variety of mechanisms, such

as: strategy pattern, factory pattern and DI pattern. In
following sections, DI will be described in detail, and its
specific application under different frameworks will be
presented.

DI is a very important design pattern through which IoC is
implemented. Instead of having objects creating a dependency or
asking a factory object to make one for them, with DI pattern
passing the needed dependencies in to the object is done
externally. Externally would mean that it is done either by an object
further up the dependency graph, or a dependency injector
(framework) that builds the dependency graph. A key advantage in
DI usage is loose coupling. Objects can be added and tested
independently of other objects, because they don’t depend on
anything other than what was passed to them. By using traditional
dependencies, in order for the object to be tested, it is necessary
to create an environment in which all its dependencies exist and
are available before the object itself is tested. By applying the DI
pattern, testing is much easier because it allows the use of mock
objects. Mock objects are simulated objects that mimic the
behavior of real objects in controlled ways. Mock object is
usually created to test the behavior of some other object.

IV. DI APPLICATION IN FRAMEWORKS

Within this paper DI application in two different frameworks is
presented. Spring and Angular:

• Spring Framework is an open source Java platform that
provides comprehensive infrastructure support for the
development of Java applications [6],

• Angular is a TypeScript MVC (Model-View-Controller)
framework designed to build a maintainable single page web
applications.

Each of these frameworks also has a built-in subsystem for DI,
which allows the application to be developed, understood and
tested more easily.
A. Spring Framework

Spring IoC Container is the core of Spring framework. The
container is in charge of creating objects, connecting them,
configuring them and managing their entire life cycle from
creation to destruction.

 Spring Container uses DI to manage the components that make

the application. These objects are named Spring beans. Spring
IoC Container defines the rules by which beans work. Bean is
pre-initialized through its dependencies. After that, bean enters
the state of readiness to perform its own functions. Finally, the IoC
Container destroys bean [7].

Beans are defined to be deployed in one of two modes:
singleton or non-singleton. When a bean is a singleton, which is a
default mode for bean’s deployment, only one shared instance
of the bean will be managed and all requests for beans with an
id or ids matching that bean definition will result in that one
specific bean instance being returned. The non-singleton,
prototype mode of a bean deployment, results in the creation of a
new bean instance every time a request for that specific bean
occurs.

Usage of DI within Spring framework, is explained in the
following example.

Listing 1. VehicleService Interface

Listing 2. CarService class

Listing 3. CarServiceDependent class

Spring IoC Container manages beans, which means that it
takes care of creating the beans that are necessary, and in this
particular case it is a service. Also, Spring IoC Container needs to
provide service instance to CarServiceDependent class, shown on
listing 3, and once the execution is complete it needs to be able to
destroy it.

 - 121 -

@Component
public class CarServiceDependent {

@Autowired
VehicleService carService;

@Test
public void test() {

System.out.println(carService.transport());
}

}

In order for Spring to do this, it’s necessary to do two things
before:

• to create a bean of CarService,
• it needs to inject the created bean of CarService to

CarServiceDependent class and assign it to the service
property.

In order for Spring IoC Container to create a bean CarSer-
vice, shown on listing 2, or to make an instance of any class that
should be managed by Spring, it is necessary to add the annotation
@Component over this particular class. This way Spring can
manage this dependence, which means that Spring detects this as a
bean, or an object managed by the Spring IoC Container. Spring
@Service annotation is a specialization of @Component
annotation. It is used to mark the class as a service provider. It is
used within classes that provide some business functionalities.

Other thing that needs to be done is injecting CarService
object into the property named service. This can be done by
adding @Autowired annotation. This annotation tells to Spring that
CarServiceDependent class needs that service, so it will find
right object for this particular property and inject it in.

In order for Spring knowing that the instance of CarService
bean is the one that should be mapped in CarServiceDependent
class, Spring will search through the services that it has
created. This way, it will check if there is one which is of this
particular class (CarService). It will find the one that was created
and inject it in service.

The other way he does it is by interface. For this example, an
VehicleService interface is created and shown on listing 1.
CarService class implements VehicleService interface, and
everything remains the same. But, changing the property type to
name of the interface is possible so CarServiceDependent
class will now look like code on listing 4 presents.

Listing 5. TruckService class

In case of bootstraping, Spring would throw an exception,
because it is trying to find one matching bean, but it finds two:

• CarService,
• TruckService.
In this paper, two different approaches in resolving this issue are

presented.
First approach would be renaming a particular property, named

service to the name of the concrete service, carService for
example, like code on listing 6 presents. In this case, Spring detects
that the name of the instance is carService, and that it is an
implementation of VehicleService, so Spring is able to inject it.

Listing 6. Property named by service

Another approach in resolving this issue is adding @Qualifier
annotation and passing the name of the bean that needs to be
injected. So using the @Qualifier annotation along with
@Autowired, removes the confusion by specifying which exact
bean will be injected. In this concrete example, CarService
bean is needed, and the code will look like listing 7 presents.

Listing 4. Instance by interface

This way, when loaded, Spring will start looking for im-
plementations of this interface, and since CarService class
implements VehicleService interface, Spring will find this
implementation and it will inject instance of appropriate class. It is
possible that two or more different service classes implement
the same interface. In this example, CarService and
TruckService classes implement VehicleService. Example of
another service that implements VehicleService interface is
presented on listing 5.

Listing 7. CarServiceDependent class with @Qualifier

Also, DI can be implemented through both constructor and set
methods. In case of injecting dependencies through a constructor,
the IoC container will invoke a constructor with arguments each
representing a dependency that needs to be set. For DI based on
set method, the container will call set methods of particular class,
after invoking a no-argument constructor to instantiate the bean.

@Service
public class TruckService implements VehicleService{

@Override
public String transport() {
return "Truck transport";

}

}

@Component
public class CarServiceDependent {

@Autowired
@Qualifier(value = "carService")
VehicleService service;

@Test
public void test() {

System.out.println(service.transport());
}

}

@Component
public class CarServiceDependent {

@Autowired
VehicleService service;

@Test
public void test() {

System.out.println(service.transport());
}

}

 - 122 -

import { ReflectiveInjector } from ’@angular/core’;

class TruckService {};
class CarService {};

let inj = ReflectiveInjector.resolveAndCreate([
TruckService,
CarService

]);

let vehicleService = inj.get(TruckService);
console.log(vehicleService);

import { ReflectiveInjector } from ’@angular/core’;

class CarService {};
class TruckService {};

let inj = ReflectiveInjector.resolveAndCreate([
CarService,
TruckService

]);

let childInj = inj.resolveAndCreateChild([CarService

]);
console.log(childInj.get(TruckService));

 Performance cost of wiring beans is usually located in the start-
up phase of application. @Autowired is essentially a lookup per
type. This means that the IoC container has to be able to know
the types of the managed beans defined in the application context.
This can be a bit slower process.

B. DI in Angular framework
The DI framework in Angular contains four concepts working

together:
• Token uniquely identifies object that needs to be injected.
• Dependency presents the actual code that needs to be

injected.
• Provider is a map between a token and a list of depen-

dencies.
• Injector is a function. When a token is passed to injector,

injector returns a dependency (or a list of dependencies).

1) Injector: Injector is used to resolve a token into a
dependency. On listing 8 DI pattern is presented.

Listing 8. Injector

A Reflective Dependency injector is a container that is used
for instantiating objects and resolving dependencies. Function called
resolveAndCreate() resolves an array of providers and creates an
injector from those providers. Injector is configured by providing
an array of these classes (providers). A token is passed, in this
case as a class name, into injector. This way, it asks injector to
resolve a dependency. Injector returns an instance of the class, so
in this example, it returns TruckService instance.

Injectors cache dependencies. Multiple calls to the same
injector for the same token will return the same instance.
Different injectors hold different caches, so resolving the same
token from a different injector will return a different instance.

Injectors can have one or more child injectors. Child injectors
behave just like the parent injector with a few additions.

Listing 9. Child injector 1

Listing 10. Child injector 2

• Each injector creates its own instance of a dependency.
• A child injector will forward a request to its parent if it can’t

resolve the token itself.
On listing 9, child injector and parent injector are both

configured with the same provider (VehicleService). But, the child
injector resolves to a different instance of the dependency compared
to the parent injector.

On listing 10, a parent injector is configured with CarService
and TruckService. A child injector is created from the parent
injector, but this child injector is configured only with CarService.
The parent and child injectors resolve the same token and both
return the same instance of the dependency. In this case, the token
TruckService from the child injector is requested. Child injector
can’t find that token locally so it asks its parent injector which
returns the instance it had cached from a previous direct
request. Therefore the dependency returned by the child and
the parent is exactly the same instance.

2) Provider: Injectors are configured with providers and a
provider links a token to a dependency. The configuration for a
provider is an object which describes a token and configuration
for how to create the associated dependency. The other properties of
the provider configuration object depend on the kind of that is
configured. In case configuring classes is needed, then useClass
property will be used. If only providing classes is needed, then a
list of class names as the providers needs to be passed. Also,
switching dependencies is possible.

Listing 11. Provider

console.log(inj.get(VehicleService) === childInj.get

(VehicleService));
// false

import { ReflectiveInjector } from ’@angular/core’;

class VehicleService {};

let inj = ReflectiveInjector.resolveAndCreate([

VehicleService]);
let childInj = inj.resolveAndCreateChild([

VehicleService]);

import { ReflectiveInjector } from ’@angular/core’;

class TruckService {};
class CarService {};

let inj = ReflectiveInjector.resolveAndCreate([
{ provide: "VS", useClass: TruckService }

]);

let service = inj.get("VS");
console.log(service); // new TruckService()

 - 123 -

On listing 11 the token is string "VS" (VehicleService) and
the dependency is the class TruckService. The above code is
configured so when it requests the token "VS" it returns an
instance of the class TruckService.

Provider types:
It is possible to configure providers to return 4 different kinds

of dependencies: classes, values, aliases and factories.
• useClass - provider which maps a token to a class, like

listing 12 presents.

Listing 14. useValue provider

• useFactory - configuring a provider to call a function
every-time a token is requested is possible, leaving it to the
provider to figure out what to return, like listing 15
presents:

Listing 12. useClass provider

• useExisting - two tokens map to the same thing via

aliases, like listing 13 presents.

Listing 15. useFactory provider

When the injector resolves to this provider, it calls the
useFactory function and returns whatever is returned by this
function as the dependency.

3) Token: There are 3 different ways of defining tokens:
String tokens can be used like listing 11 presents, where the

string "VS" as the token in class provider configuration was used.
So when it requests the token "VS" it returns an instance of the
class TruckService.

Instead of using string, it is also possible to use a type as a
token, by specifying a class name as the type.

Listing 13. useExisting provider

The token CarService resolves to an instance of CarService.
Provider maps the token HatchbackService to whatever the
existing CarService provider points to. Also, provider maps the
token LimousineService to whatever the existing CarService
provider points to. So requesting a resolve of LimousineSer-
vice, HatchbackService or CarService will return an instance of
CarService. All three instances of CarService returned are the
same instance.

• useValue - providing a simple value is also possible, like
listing 14 presents.

Listing 16. Type token

On listing 16 a code is presented, in which base class
VehicleService is used as the token. This is possible because
TruckService and CarService classes extend VehicleService
class.

Defining a token via an instance of an InjectionToken is
possible as well, like listing 17 presents.

import { ReflectiveInjector } from ’@angular/core’;

class VehicleService {};
class TruckService extends VehicleService {};
class CarService extends VehicleService {};

let inj = ReflectiveInjector.resolveAndCreate([
{ provide: VehicleService, useClass: CarService }

]);

let service = inj.get(VehicleService);
console.log(service);

import { ReflectiveInjector } from ’@angular/core’;

class TruckService {};

let inj = ReflectiveInjector.resolveAndCreate([
{ provide: TruckService, useClass: TruckService },

]);

let apiKey = inj.get("APIKey");
console.log(apiKey); // "abcdef12345"

import { ReflectiveInjector } from ’@angular/core’;

let inj = ReflectiveInjector.resolveAndCreate([
{ provide: "APIKey", useValue: ’abcdef12345’ }

]);

import { ReflectiveInjector } from ’@angular/core’;

class HatchbackService {};
class LimousineService {};
class CarService {};

let inj = ReflectiveInjector.resolveAndCreate([
{ provide: CarService, useClass: CarService },
{ provide: HatchbackService, useExisting:

CarService },
{ provide: LimousineService, useExisting:

CarService }
]);

let carService1 = inj.get(LimousineService);
console.log(carService1); // CarService {}

let carService2 = inj.get(HatchbackService);
console.log(carService2); // CarService {}

let carService3 = inj.get(CarService);
console.log(carService3); // CarService {}

import { ReflectiveInjector } from ’@angular/core’;

class TruckService {};
class CarService {};

const isProd = true;

let inj = ReflectiveInjector.resolveAndCreate([
{ provide: "VS", useFactory: () =>
{
if (isProd) {
return new TruckService();

} else {
return new CarService();

}
}

}]);

let service = inj.get("VS");
console.log(service); // TruckService {}

 - 124 -

@Component({
selector: ’my-component’,
template: ‘...‘,
providers: [CarService]

})

class OtherService {
constructor() {};

}

class MainService {
constructor() {};

}

Listing 21. Configuring NgModule with providers

@Inject decorator is used to instruct Angular to resolve a
token and inject a dependency into a constructor, like listing 22
presents.

Listing 17. InjectionToken

In this example, an instance of InjectionToken is created and
stored in a variable and the instance of InjectionToken is used as
the token in provider.

The NgModule decorator has a property called providers
which accepts a list of providers, like listing 18 presents:

Listing 18. Providers

This creates a top level parent injector and configures it with
two class providers, CarService and TruckService. It is also
possible to configure Components and Directives the same way
using a property called providers on the Component and
Directive decorators, like listing 19 presents:

Listing 19. Component with providers

This way a child injector is created. Its parent injector is the
injector on the parent component. In case there was no parent
component, then the parent injector would be top level NgModule
injector.

When Angular creates a component it uses the DI framework
to figure out what to pass to the component class constructor
as parameters.

For the purpose of presenting @Inject or @Injectable
decorators, two classes are made, presented on listing 20.

Listing 20. Service classes

Also, NgModule is configured with these two classes as
providers, like listing 21 presents.

Listing 22. @Inject decorator

The first parameter of @Inject is the token that needs to
resolve this dependency with, in this case OtherService. When
Angular tries to construct the class it gets the instance of
OtherService passed in from the DI framework. @Injectable
decorator, is used to automatically resolve and inject all the
parameters of class constructor.

V. CONCLUSION

Creating an application can be a very complex process and
it requires a compound approach. Applying DI design pattern is
an advantage that significantly contributes to it. In this paper,
concrete mechanisms for using this pattern in two different
frameworks are presented. Also, it can be noted that this pattern is
applicable, whether it’s a back-end or front-end part, even within
multilayer applications. In the case when the DI would not be
applied, the code of each application would become complicated
for maintenance, testing and multiple use, and the components
within it would be tightly coupled. Also, DI pattern can be useful
when it comes to implementing software security. Maintaining
security of software is of imperative importance in a business
environment [8]. Therefore, it has a significant impact on the
efficiency and quality of the applications themselves.

REFERENCES

[1] A. Shvets, M. Pavlova, and G. Frey, “Design patterns explained simply,”
URL: https://sourcemaking. com [Online, 2015.

[2] M. Fowler, “Inversion of control containers and the dependency injection
pattern,” 2004.

[3] M. Mari et al., “The impact of maintainability on component-based
software systems,” in null, p. 25, IEEE, 2003.

[4] E. Razina and D. S. Janzen, “Effects of dependency injection on main-
tainability,” in Proceedings of the 11th IASTED International Conference
on Software Engineering and Applications: Cambridge, MA, p. 7, 2007.

[5] C. Walls and R. Breidenbach, Spring in action. Dreamtech Press, 2005.
[6] R. Johnson, J. Hoeller, K. Donald, C. Sampaleanu, R. Harrop, T. Risberg,

A. Arendsen, D. Davison, D. Kopylenko, M. Pollack, et al., “The spring
framework–reference documentation,” Interface, vol. 21, p. 27, 2004.

[7] M. Raible, “Spring Live“. SourceBeat, LLC, 2004.
[8] P. Dašić, J. Dašić and B. Crvenković, “Applications of Access Control as a

Service for Software Security“, 2015.

@NgModule({
...
providers: [OtherService, MainService]

})

export class AppModule {
}

@NgModule({
providers: [CarService, TruckService]

})

class AppModule {};

import { Inject } from ’@angular/core’;

class MainService {

otherService: OtherService;

constructor(@Inject(OtherService)
otherService: OtherService)

{
this.otherService = otherService;

};
}

import { ReflectiveInjector } from ’@angular/core’;
import { InjectionToken } from ’@angular/core’;

class TruckService {};
class CarService {};

let VehicleService = new InjectionToken<string>("VS"

);
let inj = ReflectiveInjector.resolveAndCreate([
{ provide: VehicleService, useClass: CarService }

]);

let service = inj.get(VehicleService);
console.log(service);

	Marko Bojkić / Đorđe Pržulj / Miroslav Stefanović / Sonja Ristić

