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Sažetak— This paper gives an overview of the separable two 

dimensional transposed Farrow structure. We analyze a 

separable transposed implementation structure in terms of 

complexity. We also present a straightforward procedure to 

design the separable 2-D Farrow structure. The procedure is to 

apply the best known one dimensional frequency domain design 

method for polynomial-based filters in each dimension. In this 

way, all frequency domain requirements, such as passband 

ripple, stopband attenuation, passband and stopband edges are 

defined independently for each dimension. 

Ključne riječi-2-D digital filters, Farrow structure, Filter 

design. 

I. INTRODUCTION 

The Farrow structure has been used in many cases to build 
variable digital filters, with adjustable frequency characteristics 
[1]-[5]. In many signal processing applications it is required to 
determine signal samples at arbitrary positions between 
existing samples of a discrete-time signal. In these cases, it is 
beneficial to use polynomial-based interpolation filters. For 
these filters, an efficient overall implementation can be 
achieved by using a continuous-time impulse response ha(t) 
having the following properties Error! Reference source not 
found.], [2]; First, ha(t) is nonzero only in a finite interval 

 t NT with N being an integer. Second, in each 

subinterval nT  t < (n +1)T, for n  , …, N1, ha(t) is 
expressible as a polynomial of t of a given (low) order M. 

Third, ha(t) is symmetric with respect to t  NT2 to guarantee 
phase linearity of the resulting overall system. The length of 
polynomial segments, T, can be selected to be equal to the 
input Tin or output Tout sampling interval, a fraction of the input 
or output sampling interval, or an integer multiple of the input 
or output sampling interval. The advantage of the above system 
lies in the fact that the actual implementation can be efficiently 
performed by using the Farrow structure [1] or its 
modifications [2], [3]. 

The original Farrow structure has been modified to 2-D 
case in order to build variable digital filters for applications 
mainly in digital image processing [4], [5]. For example, in 
image processing we are interested in two-dimensional 
interpolation in order to achieve better image resolution. In the 
literature, several two-dimensional interpolation methods and 
two-dimensional modifications of the Farrow structures with 
design methods have been proposed [4]-[6]. In [6] Shyu et al. 
presented an effective 2-D Farrow structure and the design of  

variable fractional delay filters suitable for digital image 
processing. The design method exploits the symmetric/anti-
symmetric relationship between filter coefficients. The 
structure of [6] is good option to implement nonseparable 
circularly symmetric low-pass variable fractional delay filters. 
In [4], Sankaran et al. presented 2-D Farrow structure suitable 
for separable case, which is used for nonuniform to uniform 
image resampling. 

In this paper, we analyze separable 2-D Farrow filters in 
terms of implementation complexity. We also study frequency 
domain performance of the analyzed separable 2-D Farrow 
filter. 

II. SEPARABLE 2-D FARROW STRUCTURE 

As stated above, Sankaran et al. presented 2-D Farrow 
structure which is used for non-uniform to uniform image re-
sampling [4]. The structure is separable, and allows one an 
independent design in each dimension. The structure of [4] is 
intended for efficient reduction of image resolution and each 
separable filter is given in the transposed form. In a sequel we 
analyze this separable transposed 2-D Farrow structure. 
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Fig. 1.  Calculating fractional intervals. 
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However, all conclusions can be drawn in a dual direct form 
which is more suitable for image interpolation. 

As originally derived in [4], the separable transposed 2-D 
Farrow structure can be represented by following input/output 
relation: 
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where  (     )  is an input pixel,  (   )  is an output pixel, 
   (  ) are coefficients of the transposed Farrow structure in 

the first dimension,    (  ) are coefficients of the transposed 

structure in the second dimension,    is the fractional interval 
in the first dimension, and    is the fractional interval in the 
second dimension. Figure 1 illustrates how the input 
parameters    and    are calculated. The inner sum in (1) is 
represented by term blockid in Fig. 2 to refer to the square box 
formed between the integer intervals in the 2D grid. For each 
input sample, the integer block to which it belongs in the 
output grid is calculated from      . The sampling rate 
conversion is done in the accumulators similar to the 1D 
transposed Farrow structure. The accumulators are reset when 
blockidk−1 ≠ blockidk . All the accumulators are reset 
synchronously. Equation (1) can be represented by a two 
dimensional structure utilizing the transposed Farrow structure 
as shown in Fig. 3 where TF stands for the transposed Farrow 
structure [4], [15]. The transposed Farrow structure is shown in 
Fig 2. The structure shown in Fig. 3 is the separable transposed 
2-D Farrow structure. The expanded form of the structure is 
given in Fig. 4.  

The computational complexity of the separable 2-D 
transposed Farrow structure depends on polynomial order, and 
number of polynomial segments (filter length) in each 
direction. The computational load can be further decreased by 
exploiting symmetry/antisymmetry between coefficients. The 

number of multipliers can be expressed as: 

   (    )     ⁄     (    )     ⁄     

where M1 and M2 are filter orders, and N1 and N2 are filter 
lengths in each direction. We can see that the filter order Mi 
and filter length Ni can be selected independently, as it will be 
described in the next section. 

III. FREQUENCY DOMAIN ANALYSIS OF SEPARABLE 2-D 

FARROW STRUCTURE 

In this chapter we present a straightforward procedure to 
design the separable 2-D Farrow structure. The procedure is to 
apply the best known one dimensional frequency domain 
design method for polynomial-based filters presented in [2] in 
each dimension. The frequency domain requirements, such as 
passband ripple, stopband attenuation, passband and stopband 
edges are defined independently for each dimension. 
Furthermore, the filter lengths and polynomial order are also 
independently determined. 

A. Review of the minimax design method 

To this end, we assume a lowpass signal in each dimension 

xi(n)Xi(e
jin). A sampling rate in dimension i Fin

i shall be 
converted by an arbitrary ration according to Fout

i=RiFin
i 

yielding yi(l)Yi(e
jout). In case of Ri>1 (Ri<1) the system 

realizes interpolation (decimation). The ultimate aim is to 
determine a continuous-time, finite-length impulse response 
ha

i(t) in dimension i of the sampling rate conversion system 
such that the following requirements are met: 

1) Preserve the usable spectral content of the input signal 

for 

 )()( inout j
i
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i eXeY
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Fig. 2.  The transposed Farrow structure (TF). 
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Fig. 3.  Two-dimensional Farrow structure using TF blocks, where TF is 

the transposed Farrow structure shown in Fig 2. 
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2) Reject in the stopband all spectral components that give 

rise to aliasing (imaging) as a result of sampling with Fi as 

much as possible 

3) Reject in the stopband all spectral images of Xi(e
jin) as 

much as necessary. 
It should be pointed out that, in the decimation case, the 

filter with the impulse response ha
i(t) acts as an anti-aliasing 

filter rejecting the frequency components aliasing onto the 
base-band. On the other hand, in the interpolation case, the role 
of this filter is to preserve the original base-band region and to 
eliminate the imaging components. Hence, it acts as an anti-
imaging filter.  

In order to generate a realizable overall system, the criteria 
for the Fourier transform of ha

i(t) in each dimension are stated 
as follows [2]: 


,for )(

for )1()()1(

i
s
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s

i
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In all three cases, the signal is preserved according to the 
given tolerance in the passband region [0, fp

i]. Furthermore, the 
aliasing components are attenuated in the defined manner. In 
Case A, all components aliasing into the baseband [0, Fi/2] are 
attenuated. In Case B, all components aliasing into the 
passband [0, fp

i] are attenuated, but aliasing is allowed in the 
transition band [fp

i, Fi/2]. In Case C, aliasing into the transition 
band [fp

i, Fi/2] is allowed only from the band [Fi/2, Fi+fp
i]. In 

the above discussion and in (4) and (5) Fi stands for Fout in a 
decimation case, and Fin in an interpolation case in dimension i. 

The minimax optimization method introduced in [2] is 
probably the most convenient and the most flexible solution for 
designing polynomial-based interpolation filters. This method 
is applied two times for each dimension independently. 

Minimax Optimization Problem: Given Ni, Mi, and a 

compact subset  i  [0,)  as well as a desired function Di( f ) 

being continuous for f i  and a weight function Wi( f ) being 

positive for f i , find the (M i +1)Ni/2 unknown coefficients 
cm(n) (bm(n) in other dimension) to minimize 

  )()()(max fDfHfW

f
i

i
ai

i

i 



  

subject to the given time-domain conditions of ha
i(t). Here, 

Ha
i( f  ) is the real-valued frequency response and Di(f ) is the 

desired function according to specifications. (For details refer 
to [2]) 

The minimax design method has several design parameters. 
First of all, the design parameters include passband and 

stopband regions p
i and s

i, which are determined with 

passband fp
i and stopband fs

i edges. The desired filter may have 
several passbands and stopbands as stated in [2]. Next, the 

minimum stopband attenuation s
i, and maximum allowable 

passband ripple p
i are also included. Other design parameters 

are the number of polynomial segments Ni and the order Mi of 
the polynomial, which determine the number of multipliers in 
the overall structure, see (2). Finally, some weighting function 
Wi(f) can be used to give different weights to passband and 
stopband. 

IV. DESIGN EXAMPLE 

In this section we design a separable two-dimensional 
transposed Farrow structure using frequency domain design 
method of [2] explained in the previous section. To illustrate 
this, the following specifications are considered: 

Case C specifications: The passband and stopband edges 

are at fp
i
=0.4Fout and at fs

i
=0.6Fout, in each dimension. Both 

filters have been designed in minimax sense with the passband 
weighting equal to unity and stopband weightings of Wi=100, 

with maximum allowable passband ripple p
i=0.1 and 

minimum stopband attenuation s
i=0.001 (60dB) in each 

dimension.  The degree of the polynomial in each dimension 
Mi equals four, and the number of intervals Ni equals 14. Recall 
that Ni is an even integer. Figure 5 illustrates obtained impulse 
response, and Fig. 6 displays magnitude response of the 
separable two-dimensional transposed Farrow structure. The 
complexity of the overall 2-D transposed structure measured by 
number of multipliers according to (2) is 78. 

V. CONCLUSIONS 

In this paper, we have analyzed implementation structure 
for the separable two-dimensional transposed Farrow structure. 
We applied the frequency domain design method of [2] to the 
two-dimensional case. We have showed that all frequency 
domain requirements, such as passband ripple, stopband 
attenuation, passband and stopband edges are defined 
independently for each dimension. The filter lengths and 
polynomial order are also independently determined. In this 

 
Fig. 5.  Impulse response of two-dimensional Farrow structure. The degree 

of the polynomial in each dimension Mi equals four, and the number of 

intervals Ni equals 14.   
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way, it is possible to treat 2-D signal independently in each 
dimension. 
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Fig. 6.  Frequency response of two-dimensional Farrow structure. The 

degree of the polynomial in each dimension Mi equals four, and the 

number of intervals Ni equals 14.   


