
INFOTEH-JAHORINA Vol. 15, March 2016.

 - 568 -

Comparative Performance Analysis of Magnetic Hard
Disk and Solid-State Drives Using 64-bit btrfs

Filesystem

Stefan Stojkov, Ina Masnikosa
School of electrical engineering, University of Belgrade

Mihajlo Pupin Institute, University of Belgrade
Belgrade, Serbia

stefan.stojkov@pupin.rs, ina.masnikosa@pupin.rs

Borislav Djordjevic
Mihajlo Pupin Institute, University of Belgrade

Belgrade, Serbia
bora@impcomputers.com

Abstract—The main subject of this paper is the performance
analysis of btrfs (B-tree filesystem) as a newly developed Linux
filesystem, in combination with two types of storage devices:
magnetic hard disk (HDD) and solid-state drive (SSD). Despite
the extensive usage of the magnetic hard drives, solid-state drives
tend to replace them as faster and more reliable devices.
Different types of benchmark tests were performed in order to
obtain representative results and see the difference in
performance between these two storage units. The results clearly
show the advantage of SSDs over HDDs while using modern btrfs
filesystem.

Keywords-filesystem; btrfs; solid-state drive; magnetic hard disk
drive; Linux; benchmark

I. INTRODUCTION
With the constant technological improvements, the

necessity for better controlled and safer data storage also
increases. Different filesystems are in use for controlling all
kinds of data often stored on local storage devices.
Filesystems depend on an operating system and represent
logic for data management and organization. Ease of access to
data, its reliability and time performance also depend on a
storage media, which is used by the filesystem. Magnetic hard
disk drive stands out as the most commonly used local storage
unit, but the usage of solid-state drives steadily increases over
the last couple of years due to their improved reliability and
speed.

The focus of this paper is the performance characteristics
of btrfs (B-tree filesystem) while utilizing magnetic hard disk
drive or solid-state drive as a storage unit. Btrfs is a filesystem
that works under Linux operating system. The main
characteristic of this particular filesystem is that the processed
data are always copied to a new location [1]. Solid-state drive
works on a similar principle, since they copy data to a new
location while updating them, introducing additional
complexity. Nevertheless, the btrfs filesystem is supposed to
be efficient in combination with solid-state drive. It would be
interesting to test this hypothesis by comparing the results
obtained using benchmarking tool on both drives. For the
purpose of testing, Bonnie++ [2] is used to acquire the results.

After the introductory section, brief overview of the Linux
filesystems is given, with the emphasis on btrfs. Section III
presents two types of storage units used as test devices. The
following section includes experimental configuration, results
and performance analysis of the chosen filesystem on both
storage devices. Finally, conclusions are exposed in the last
section.

II. LINUX FILESYSTEMS
Linux is considered to be the most popular of all the UNIX-

like operating systems. It supports a variety of filesystems [3],
and some of them will be mentioned in this section.
Filesystems may act differently in combination with different
storage units. This comes from a fact that each of them
contains unique properties which are more or less compatible
with the particular storage device [4, 5]. The focus will be on
btrfs filesystem which is one of the newly developed
filesystems (5th generation).

Each new filesystem is created in order to deal with the
limitations found in previous types of filesystems. For
example, ext4 filesystem was introduced as an upgrade of ext3
by the means of scalability, performance, and reliability. This
type of filesystem was included in Linux version 2.6.19, and
since then it has become one of the most popular filesystems. It
introduced extents – descriptors representing a range of
contiguous physical blocks [6]. Another frequently used
filesystem is xfs, which was developed in 1993, and ported to
Linux kernel eight years later. It is a high performance
journaling filesystem, which is divided into separate allocation
groups, i.e. equally size chunks. Xfs consists of two B+ trees,
one where regions of free space are ordered by size, and the
other where the regions are ordered by their starting physical
location on the block device [7]. Besides the ext family of
filesystems and xfs, jfs and ReiserFS were also used in Linux
distributions. Btrfs introduces new features in order to further
improve scalability, reliability and performance in general.

A. Btrfs
As mentioned before, btrfs filesystem represents one of the

newly developed filesystems. The development was started in

 - 569 -

2007, and it was intensified in the last couple of years. It was
included in Linux version 2.6.29, in 2009.

This type of filesystem is based on copy-on-write (CoW)
principle and it utilizes B+ trees as fundamental data structures.
B+ tree maps index keys into internal nodes and the
appropriate data is stored in the leaves. These trees are also
used in xfs filesystem, but with one significant difference for
btrfs. The processed data are always copied to a new location,
thus in-place modification is avoided. This property gives btrfs
filesystem an advantage in terms of crash recovery, since the
data are written in a different location every time.

The main features of the btrfs filesystem are: dynamic
inode allocation, writable snapshots, data checksum, fast file
system checking, compression, defragmentation and mirroring
[8].

III. DISK DRIVE

A. Magnetic Hard Disk Drive (HDD)
HDD permanently stores data using magnetic disks, called

platters. These flat disks rotate and electromagnetic heads are
used for reading previously stored data, or writing new ones [9,
10]. Data are organized in tracks (circular paths) which are
further divided into sectors.

One of the key parameters regarding magnetic HDD
performance is spindle speed. This term is used for physical
rotational speed of the platters measured in RPM (revolutions
per minute). It directly affects the average latency of the
magnetic hard drive. The latency is defined as the time needed
for the correct sector to position to the location of the heads.
The average latency is calculated as half value of the “worst
case” latency (full rotation). Besides latency, there are three
more factors that affect the overall positioning performance:
command overhead time, seek time and settle time. Command
overhead time represents time required for the disk to start
executing the command. Seek time usually refers to as the
average time it takes for the head to move between two random
tracks. This is the most common seek measurement, but two
more types are used as well: track-to-track (seek time between
two adjacent tracks) and full stroke (seek time for entire disk
width). Settle time is the amount of time required for head
stabilization before reading or writing begins. These four time
intervals form total access time of the magnetic HDD.
Command overhead time and settle time can be omitted, since
they are small compared to seek time and rotational latency.
Besides access time, two other factors influence total reading
and writing performance: media speed and interface speed.
Media speed is defined as the density of the track per time
needed for one revolution. Basically, it is a rate at which the
magnetic HDD reads data from the surface of the disk. Here, it
is the same for reading and writing. Interface interval
represents the time required to transfer data from the drive’s
controller to the host system.

Based on the previous discussion, the formula for the total
time needed for reading or writing can be used:

Ttotal = Tseek + Trotational_latency + Tmedia + Tinterface (1)

where Tseek refers to seek time, Trotational_latency represents the
average rotational latency of the magnetic HDD, whereas Tmedia
is the time needed for reading data from the surface of the
media or to write data to the media, and Tinterface represents the
amount of time for the data transfer to host system.

B. Solid-State Drive (SSD)
In contrary to magnetic HDD, SSD permanently stores data

using flash memory chips. This gives them advantage over
magnetic hard drive disks regarding read/write speed since
there is no need for any conversion (the information is stored in
electronic form). The usage of flash memory made SSD the
first competitor to magnetic disk storage [11]. In addition, SSD
does not contain movable mechanical parts. Therefore, almost
instantaneous access to data is possible.

The main components of SSD are: flash memory and
controller. Flash memory uses NAND technology [12] which is
characterized by short erasing and programming times. There
are two different types of flash memory: SLC (Single Level
Cell) and MLC (Multi Level Cell). As the name suggests, the
difference between these two types is the number of bit values
stored in one cell [13].

As mentioned before, SSD contains a controller unit, which
is the fastest part of the drive. Controller groups flash
memories into channels. If the buffer is present, controller is
connected to the bus through buffer. Otherwise, they are
connected directly.

 SSD storage is divided into blocks (typical block size is
512 KB). Blocks are further divided into pages (4 KB), with
128 pages in each block. Having no mechanical delays, SSD
has the advantage over HDD regarding total read/write time:

Ttotal = Tmedia + Tinterface (2)

Here, Tmedia and Tinterface have the same meaning as in (1), with
the difference that data are now read from or written to flash
memory.

As stated before, the time required for reading and the time
required for writing are basically the same when magnetic
HDD is utilized. On the other hand, media rate differs for
reading and writing when solid-state drive is used. In the case
of reading, the time is calculated by:

Tmedia = Tpage_reading (3)

where Tpage_reading refers to the time needed for reading pages.

Writing process is far more complex. Pages cannot be
overwritten, i.e. they need to be empty. Also, only the entire
block can be deleted, i.e. it is not possible to erase pages
separately. Therefore, when existing page needs to be updated,
the content of the entire block is copied into a new location.
Then, the block is erased, and the content of the old block, as
well as the data of the updated page are written to the new
block. Total time needed for writing can be expressed with:

Tmedia = Tgar_coll + Tblock_erasing + Tpage_writing (4)

where Tgar_coll represents the time needed for the garbage
collection, Tblock_erasing is the time required for the deletion of
the entire block, and Tpage_writing refers to the amount of time

 - 570 -

required for the updating of the pages. Garbage collection
refers to as process of removing the blocks of data which are
not needed anymore before copying the valid ones to a new
location.

Btrfs filesystem introduces additional complexity because
of the CoW method, which updates data by placing them into a
new location. Therefore, garbage collection processing is more
time consuming.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Hardware Configuration
The specification of used hardware is presented in table I.

Tests were performed on CentOS Linux operating system
using both magnetic HDD and SSD. The specification of
HDD [14] and SSD [15] drives are shown in tables II and III,
respectively.

B. Filesystem Organization
Keeping in mind the capacities of the chosen storage

devices, the operating system was installed on magnetic hard
disk drive. Complete filesystem organization is given in table
IV. Notice that partitions reserved for testing filesystem were
chosen to be the same size, marked as /dev/sda4 for magnetic
HDD testing, and /dev/sdb1 for SSD tests (120 GB each).

TABLE I. HARDWARE SPECIFICATION

Hardware Specification
RAM 8 GB
CPU Model Intel(R) Core(TM) i5-4690 CPU @ 3.50GHz
Number of CPU Cores 4
Magnetic Hard Disk Drive Toshiba DT01ACA050, 500GB, 3.5"
Solid-State Drive Transcend, TS128GSSD370S, 128GB, 2.5"

Operating System CentOS Linux 7.0.1406,
kernel – Linux 3.10.0-123.el7.x86_64

TABLE II. MAGNETIC HARD DISK DRIVE SPECIFICATION

Magnetic HDD Specification
Model Toshiba DT01ACA050, 500GB, 3.5"
Capacity 500 GB
Interface Serial ATA 3.0 / ATA-8
Transfer Rate to Host 6 Gb/s
Average Latency 4.17 ms
Average Seek Time (read) 0.6 ms
Average Seek Time (write) 0.8 ms
Rotational Speed 7,200 RPM

TABLE III. SOLID-STATE DRIVE SPECIFICATION

SSD Specification
Model Transcend, TS128GSSD370S, 128GB, 2.5"
Capacity 128 GB
Interface Serial ATA III
Transfer Rate to Host 6 Gb/s
Storage Media Synchronous MLC NAND Flash memory
Controller Transcend TS6500
Buffer None
Max. Read 550 MB/s
Max. Write 170 MB/s

TABLE IV. FILESYSTEM ORGANIZATION

Device Filesystem organization
Size Partition

/dev/sda1 500 MB /boot
/dev/sda2 10 GB /swap
/dev/sda3 300 GB /root
/dev/sda4 120 GB /hdd
/dev/sdb1 120 GB /ssd

C. Benchmark Tool
As stated in the Introduction, Bonnie++ software is used as

benchmark tool. It is C++ software which works under UNIX-
like operating systems. This tool provides means for evaluating
performance of different filesystems and storage units.

D. Results
The results are obtained using Bonnie++ benchmark

program and they can be divided into two groups: random (Fig.
1) and sequential (Fig. 2) performance analysis. The first group
is realized using putchar() and getchar() functions, while the
other is realized using getblk() function. Fig. 1a depicts the
random write test results (putchar() function) and Fig. 1b
shows the random read test results (getchar() function). SSD
outperforms magnetic HDD by 10% in random write test and
25% in random read test. The results correspond to formula (2).
According to formula (2), SSD has an advantage over magnetic
HDD, and the difference is clearly seen in the case of random
read performance. Regarding SSD random write, performance
decreases due to additional time spent on garbage collection
and block erasing in accordance with formula (4).

Fig. 1 – Random performance testing: a) writing; b) reading.

 - 571 -

Fig. 2 represents sequential performance of the drives,
obtained using getblock() function. Again, SSD outperforms
magnetic HDD: by 10% in the case of sequential writing, twice
as fast as magnetic HDD in terms of read-modify-write
performance, and three times faster than magnetic HDD in
sequential reading. This group of results also fits into the given
mathematical model. According to formula (2), SSD is
significantly better than magnetic HDD in relation to formula
(1), and the difference is not significant only for sequential
writing. The reason for this lies in the fact that the large amount
of data was prepared for writing, and the SSD performance
decreased according to formula (4).

V. CONCLUSION
The purpose of this paper was to compare the performance

of magnetic hard disk and solid-state drives using modern 64-
bit btrfs filesystem. The hypothesis was that SSD would be
significantly faster, as it does not contain moving parts that
introduce additional delays in form of seek time and rotational
latency. It was also expected that the writing performance of
the SSD would be weakened due to block erasing introduced
by SSD and the garbage collection property of the btrfs
filesystem. Tests confirmed these hypotheses, as well as the
model given with formulas (1-4). SSD was three times as fast
as magnetic HDD in the case of sequential read performance,
and by about 30% better for random read tests. The difference
significantly decreased when comparing the writing
performance of the drives. This is especially the case for
sequential writing, where large amount of data needs to be
written, which results in block erasing and garbage collection
overheads.

REFERENCES

[1] O. Rodeh, J. Bacik, C. Mason “BTRFS: The Linux B-tree Filesystem,”
IBM Research Report, 9 July, 2012.

[2] Bonnie++ Benchmark Suite, http://www.coker.com.au/bonnie++/.
[3] L. Lu, A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau, S. Lu. “A Study of

Linux File System Evolution,” in Proceedings of the 11th USENIX
Conference on File and Storage Technologies, FAST’13, pp. 31–44,
2013.

[4] Linux 3.19 File-System Tests Of EXT4, Btrfs, XFS & F2FS,
http://www.phoronix.com/scan.php?page=article&item=linux-3.19-ssd-
fs&num=1.

[5] Linux 4.0 Hard Drive Comparison With
EXT4/Btrfs/XFS/NTFS/NILFS2/ReiserFS,
http://www.phoronix.com/scan.php?page=article&item=linux-40-
hdd&num=1.

[6] A. Mathur, M. Cao, S. Bhattacharya, A. Dilger, A. Tomas, L. Vivier,
"The New ext4 Filesystem: Current Status and Future Plans," in
Proceedings of the Linux Symposium, Ottawa, Canada, June 2007.

[7] D. Robbins, “Common threads: Advanced filesystem implementor's
guide,” Part 9, http://www.ibm.com/developerworks/library/l-fs9/.

[8] B. Joksimoski, S. Loskovska, “Overview of Modern File Systems,” The
7th International Conference for Informatics and Information
Technology, CIIT, 2010.

[9] E. Grochowski, “Emerging Trends in Data Storage on Magnetic Hard
Disk Drives,” Datatech, pp. 11-16, 1998.

[10] I.R. McFadyen, E.E. Fullerton, M.J. Carey, “State-of-the-art Magnetic
Hard Disk Drives,” MRS Bulletin, Vol. 31, Issue 5, pp. 379-383, May
2006.

[11] S. Boboila, P. Desnoyers, “Write Endurance in Flash Drives:
Measurements and Analysis,” in Proceedings of FAST’10, San Jose,
2010.

[12] P. Desnoyers, “Empirical Evaluation of NAND Flash Memory
Performance,” in First Workshop on Hot Topics in Storage and File
Systems (HotStorage’09), 2009.

[13] V. Timčenko, B. Đorđević, S. Obradović, N. Čorni, “Uticaj disk keš
bafera na performanse SSD diskova,” Infoteh-Jahorina Vol. 12,
Jahorina, March 2013.

[14] Toshiba DT01ACA050 Datasheet,
http://storage.toshiba.com/docs/product-datasheets/dt01aca.pdf.

[15] Transcend TS128GSSD370S_V10_Datasheet, http://www.transcend-
info.com/products/images/modelpic/579/No3118_TSXGSSD370S_V10
_Datasheet.pdf.

Fig. 2 – Sequential performance testing: a) writing; b) read-modify-write; c) reading.

