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Abstract – Graphlets are small non-isomorphic connected 
subgraphs used for different kinds of analyses in social networks, 
bioinformatics and other areas described by large networks, 
where their number can provide a characterization of the 
network properties. Much of existing methods for counting the 
graphlets are based on direct enumeration. However, in case of 
large networks, this type of counting becomes computationally 
very demanding. Fortunately, for very sparse networks  the 
computational cost is much less prohibitive than in dense 
networks, leading to the more efficient graphlet counting 
algorithms. This work is our first attempt to accelerate one of 
such algorithms by parallelization using graphic hardware. 

Key words – graphlet; orbit; network; parallel algorithm;  

I. INTRODUCTION 
The network generally describes a set of objects (nodes), as 

well as the relationship between these objects. By studying the 
technological, sociological or biological networks we can get 
information about the interactions between objects, their 
individual characteristics and their links with the characteristics 
of the network as a whole. 

Graphlet counting is a topologically rigorous way to 
characterize the structure around a network node. The number 
of appearances of graphlets in the network provides a 
description of the network’s structural properties. This method 
has been used to solve several network analysis problems such 
as comparing networks [1], network alignment [2], network 
clustering [3], etc. Unfortunately, graphlet counting can be very 
expensive, especially when network is very large.  

We need some graphlet definitions here, so we follow [4]. 
Assume, G(V, E) is a graph, then V is the set of vertices and E 
is the set of edges. Each edge e ∈ E can be represented by a 
pair of vertices (vi, vj) where, vi, vj ∈ V. A graph is called 
simple, if it does not contain a self loop, and at most one edge 
exists between two of its vertices. We consider simple, 
connected, and undirected graphs. A graph G′ = (V′, E′) is a 
subgraph of G if V′ ⊆ V and E′ ⊆ E. A graph G′ = (V′, E′) is a 
vertex-induced subgraph of G if V′ ⊆ V and E′ ⊆ E and {e = 
(va, vb) : va, vb ∈ V′, e ∈ E, e ∉ E′} = ∅. A vertex-induced 
subgraph is a subset of the vertices of a graph G together with 
any edges whose both endpoints are in this subset. We will 

refer to vertex-induced subgraph as “induced subgraph”. Two 
graphs G and G′ are isomorphic, denoted by G ≅ G′, if there 
exists a structure-preserving (both adjacency and non-
adjacency preserving) bijection f : V → V'; such a function f is 
called an isomorphism from G to G′. 

An embedding of a graph G′ in another graph G is a 
subgraph S of G, such that S and G′ are isomorphic; when the 
subgraph S is a vertex-induced subgraph of G, the embedding 
is called an induced embedding. Therefore, graphlets can be 
defined as small, non-isomorphic, connected, induced 
subgraphs of a large network. We are interested in all possible 
graphlets having k vertices, k ∈ {3, 4, 5}. We refer a graphlet 
with k vertices, as k-node graphlet. Note that, 1-node graphlet 
is simply a vertex, and 2-node graphlet is an edge. A k-node 
graphlet is called a tree graphlet if it is a tree, i.e., it has k − 1 
edges. A graphlet that is not a tree is called a cyclic graphlet. 

An isomorphism from a graph G(V, E) to itself is called an 
automorphism. For a finer description, the nodes of every 
graphlet are partitioned into a set of automorphism groups 
called orbits [1]. Two nodes belong to the same orbit if they 
map to each other in some isomorphic projection of the 
graphlet onto itself. 

The remainder of this paper is organized as follows. The 
next section provides background, and compares and contrasts 
some graphlet counting algorithms. Section three demonstrates 
the need for parallel counting, whereas the fourth section 
describes one successful sequential algorithm. The fifth section 
describes or main contribution, and the sixth section shows 
some of our results. Finally, section seven provides conclusions 
and recommendations for future work. 

II. RELATED WORK 
In terms of complexity, counting all 5-node graphlets in a 

graph G has a time complexity of O(|V|5), and therefore 
becomes a computational bottleneck. Common approaches to 
speed it up include sampling [5]–[7], exploiting pattern 
symmetries [8] or using reconfigurable hardware accelerators 
based on FPGA chips [9].  

There are several software implementations for graphlet 
counting that are mainly used in bioinformatics. FANMOD 
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[10] is a network motif detection tool based on sampling 
random subgraphs and comparing their counts with those from 
random network models. Note that motif is partial subgraphs, 
whereas graphlet must be induced subgraph. Besides 
implementing a novel sampling algorithm [5] it also provides a 
full enumeration procedure for graphlets on 2–8 nodes. 
GraphletCounter, described in [11], works as a Cytoscape [12] 
plug-in and merges graphlet analysis with visual inspection of 
the network.  

GraphCrunch [13] is a tool for large network analysis. It 
counts graphlets of up to five nodes using an enumeration 
procedure with correction for overcounting some of the 
graphlets. A well-organized enumeration method imposes 
constraints that eliminate the need for isomorphism testing 
except for distinguishing between a few different graphlets. 
This is further accelerated by comparing the number of edges 
and individual node degrees. GraphCrunch has been extended 
with a new method for topological network alignment and with 
comparison of the networks with some additional mathematical 
models [14]. The graphlet counting procedure in this new 
version of GraphCrunch remained essentially the same.  

Rapid Graphlet Enumerator (RAGE) [15] takes a different 
approach to counting four-node graphlets. Instead of counting 
the induced subgraphs directly, it reconstructs them from 
counts of non-induced subgraphs. For computing the latter, it 
uses specifically crafted methods for each of the 6 possible 
subgraphs. Unlike FANMOD and GraphCrunch, RAGE works 
only for up to four-node graphlets. 

An alternative to exact graphlet counting is to adopt 
algorithms for approximate counting that offer significant 
speedup with a small counting error. This direction has become 
popular in some of the recent researches for counting triangles 
[16], [17]. Since the cost of graphlet counting is much higher 
than the cost of triangle counting, an approximate counting 
algorithm for the former will be more useful from a practical 
standpoint. In their research [4], the authors propose a method 
called Graft to perform the task of approximate counting of 
graphlets that have up to five vertices.  

III. PARALLEL COUNTING 
Graph problems have inherent parallelism, where a task is 

performed independently on all vertices of the graph. The 
shortest path algorithm is an example, where for a given graph 
the shortest path problem for each vertex can be solved in 
parallel as an independent task. As graph problems grow in 
size, efficient parallel graph processing becomes important as 
computational and memory requirements increase. 
Unfortunately, traditional solutions that are used to parallelize 
mainstream parallel applications do not necessarily work well 
for large-scale graph problems. There are a number of 
properties that make them poorly matched to computational 
methods which are successfully applied in mainstream parallel 
applications [9]: 

• Graph computations are dictated by the vertex and edge 
structure of the graph, and the execution paths are 
difficult to analyze and predict using static analysis of the 
source code. Parallelism based on partitioning 

computations is a challenging task due to lack of 
knowledge about the structure of the computations. 

• The data in graph problems are unstructured and highly 
irregular. This irregular structure of the graph data makes 
it difficult to partition the graph data to take advantage of 
small and fast on-chip memories, e.g. such as shared 
memory and registers in CUDA GPUs. 

• Data-driven computations coupled with irregular data 
structures results in low memory access locality.  

• Many graph algorithms tend to explore the structure of 
the graph while performing a relatively small amount of 
computations (e.g. counting the neighborhood nodes). 

• All of this results in a higher ratio of data access to 
computation compared to mainstream scientific and 
engineering applications, and combined with poor locality 
leads to execution times almost dominated by memory 
latency. 

Algorithm 1 shows a general template for the graph 
algorithm targeted by our work. It consists of a loop that 
iterates through all the vertices in the graph. Suppose that each 
iteration can be performed as a separate kernel. The outer-loop 
represents the coarse-grained parallelism required for our case, 
while further fine-grained parallelism may be available within 
the graph kernel itself . 

Algorithm 1. The counting algorithm for k-node graphlets, k ∈ 3, 4, 5. 

for all nodes a of G { 
for all adjacent nodes b of a { 

for all adjacent nodes c of b { 
// finding 3-node graphlets  

for all adjacent nodes d of c { 
// finding 4-node graphlets  

for all adjacent nodes e of d { 
// finding 5-node graphlets  
} 

} 
} 

} 
} 

Here we require 72 counters per vertex to enumerate all the 
3-, 4-, 5-node graphlets for a given graph [18]. These counters 
must be stored in off-chip memory for large graphs. A counter 
may be incremented by two or more threads simultaneously 
requiring a synchronization mechanism. In the case of a system 
with a large number of parallel threads, synchronization due to 
high-contention situations can become a performance 
bottleneck because of the additional delays introduced by 
contention. This issue is often addressed by a combination of a 
parallel implementation of the outer loop and a serial 
implementation of all the inner loops. The serial 
implementation takes the form of a graph kernel, while the 
parallel implementation comes from the replication of this 
kernel. In other words, several kernels operate in parallel, and 
each kernel processes a graph node at a time; i.e. an iteration of 
the outer-loop. Implementing the inner loops sequentially on 
dedicated parallel processor would most likely result in slower 
execution times compared to software implementations.. 



 

 - 743 -

Fortunately, there exists an algorithm called Orca (Orbit 
Counting Algorithm) [18], which reduces the time complexity 
by an order of magnitude by computing the orbit counts using 
the relations between them and directly enumerating only 
smaller graphlets. This algorithm is sequential in nature, 
however it can be parallelized, as suggested by its authors. 

IV. A BRIEF DESCRIPTION OF ALGORITHM 
Orca proposes a combinatorial method for counting 

graphlets and orbit signatures of network nodes. The algorithm 
builds a system of equations that connect counts of orbits from 
graphlets with up to 5 nodes, which allows to compute all orbit 
counts by enumerating just a single one. We use this algorithm 
as a starting point for our work. 

The core of the algorithm is based on deriving a linear 
relationship between the orbit counts of various graphlets 
where the right hand side of the equation can be determined 
from the graph with an efficient algorithm.  

Specifically, algorithm allows for computing, for each node 
in the network the node’s graphlet degree vector (i.e. its 
authomorphism orbit counts) for all up to k-node 
graphlets/orbits simply by computing the same statistics for all 
up to (k–1)-node graphlets and for a single k-node 
graphlet/orbit. Then, the statistics for the remaining k-node 
graphlets/orbits can be computed through a system of equations 
of dependencies between different orbits/graphlets. This offers 
a significant empirical speed up compared to the existing 
methods on real-world networks. 

However, although the computation time is reduced by an 
order of magnitude as compared to the existing, pure 
enumeration-based algorithms, it does not reduce the 
theoretical computational complexity of graphlet counting 
procedure. The complexity of the procedure is still bounded by 
the identification of 4-node (or 5-node) cliques [19]. 
Nevertheless, it gives impressive results even in case of not-so-
sparse graphs (e.g. up to 40% density on 4-node graphlets). 

Right-hand sides of equations contain terms that are 
computed from the graph G. Let c(u, v) = |N(u) ∩ N(v)| denote 
the number of common neighbors of nodes u and v. Let p(u, v) 
denote the number of paths on three nodes that start at node u, 
continue with v can compute p(u, v) as p(u, v) = deg(v) − 1 − 
c(u, v). If some node x participates in a k-node graphlet Gi, it 
also participates in some (k −1)-node graphlet Gj. This can be 
seen by removing one of the graphlet’s nodes that are the 
farthest away from x. The subgraph induced by the remaining 
nodes is connected (any disconnected node would have to be 
farther from x than the removed node), so it is isomorphic to 
some (k −1)-node graphlet Gj. We will use this observation in 
reverse: every four-node graphlet can be constructed by adding 
a node to some three-node graphlet(s). To find the relations 
between counts of orbits in four-node graphlets for a certain 
node x, we enumerate all three-node graphlets touching the 
node and count their possible extensions with the fourth node. 

There are only two three-node graphlets and relatively few 
possible extensions. Investigating all possibilities in a similar 
manner yields 10 equations with 11 variables that correspond 
to counts of 11 orbits in four-node graphlets [18].  

Right-hand sides depend on the graph G and need to be 
computed for each point x. To accelerate their computation, we 
precompute values of c(u, v) and p(u, v). In all equations, 
except for the last one, c(u, v) is computed on pairs of nodes (u, 
v) that are connected; in p(u, v), they are connected by the 
definition of p. It therefore suffices to precompute c(u, v) and 
p(u, v) only for all pairs of connected nodes u and v, which 
requires O(e) space. The last equation, in which the new node 
closes a cycle, is treated separately. Nodes x and z are not 
adjacent but we can pre-compute the number of paths of length 
2 that start at node x and end at node y. This requires O(n) 
space for each point; since we compute orbits for one point at a 
time, this memory can be recycled. 
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In these equations  ≅  denotes graph isomorphism (e.g., 
G[{x, y, z}], a subgraph on nodes x, y, z, is isomorphic to G1, a 
path with three nodes). 

V. METHODS 
From original source code [22], we can see that the 

algorithm is implemented in three stages:  

stage 1 - precomputing common nodes;  
stage 2 - counting full graphlets; 
stage 3 - building systems of equations relating orbits for 
every node. After right-hand sides are determined, all 
equations are solved. 

Our measurements show that in first two stages, the 
algorithm spends only 24% of total execution time, and third 
stage consumes the rest of execution time. Also in the first two 
stages, there are precedence relations among computations. In 
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contrast, in the third stage results are mutually independent. 
Therefore, we put more emphasis on the third stage. 

Our code is implemented on an x86 Linux machine 
(Ubuntu 3.2.0-60.91) with the graphic card nVIDIA GTX 690 
(compute capability 3.0). The GTX 690 features two Kepler-
based GeForce GPUs (same architecture as Tesla K-series 
GPU accelerators), 4GB of GDDR5 RAM and 3072 CUDA 
cores. As a part of the installed CUDA Toolkit, we used Nsight 
Eclipse Edition 5.5.0 to edit, build and debug our application.  

A. Graph representation on CUDA 
A graph G(V, E) is commonly represented as an adjacency 

matrix. For sparse graphs such a representation wastes a lot of 
space. Adjacency list is a more compact representation for 
graphs. Because of variable size of edge lists per vertex, we 
take an advantage of CUDA which allows arrays of arbitrary 
sizes to be created and hence can represent graph using 
adjacency lists. We represent graphs in compact adjacency list 
form, with adjacency lists packed into a single large array. 
Each vertex points to the starting position of its own adjacency 
list in this large array of edges. Vertices of graph G(V, E) are 
represented as an array Va. Another array Ea of adjacency lists 
stores the edges with edges of vertex i+1 immediately 
following the edges of vertex i for all i in V. Each entry in the 
vertex array Va corresponds to the starting index of its 
adjacency list in the edge array Ea. Each entry of the edge array 
Ea refers to a vertex in vertex array Va.  

B. CUDA kernels 
We have implemented three kernels, one for each stage, 

which are executed sequentially, one after another. Each kernel 
is launched with 1024 blocks, and 1024 threads per block. Each 
thread is assigned to one graph vertex. Since in this work we 
implement only 4-node counting, it runs as follows. 

 
Initialization 

• Reading graph from input file 
• Checking for duplicate undirected edges, self loops 

and other irregularities 
• Determining degree of nodes  

Stage 1 
• Device memory allocation and initialization 
• Copy vertices and edges pairs, and  adjacency list 
• Launch kernel for precomputing common vertices  
• Precompute triangles that span over edges 

Stage 2 
• Launch kernel for counting full graphlets 
• Each device thread performs its own binary search  in 

order to find adjacent nodes 

Stage 3 
• Building and solving systems of equations 
• Per thread binary search is also executed here  

 
For execution time measurements on GPU we used 

recordings of event occurrences, as suggested in [20].  

If we want to engage both GTX690 GPUs (devices 0 and 1) 
we need to do some kind of graph partitioning, which is not a 
trivial task. Then we have to start two separate threads in host, 
and  since nowadays hosts are likely to be multicore, we should 
schedule these threads to different cores. Of course, we have to 
allocate portable pinned host memory here in order to take 
advantage of this 2GPU/2CPU threads arrangement.  

VI. RESULTS AND DISCUSSION 
We have tested our code with three sets of input data, 

available with the original code [21]. They were generated 
random graphs using Barabási-Albert, Erdős-Rényi and 
geometric algorithms [22]. All sets had in common the number 
of vertices (1000), however number of edges varied from 4000 
to 200000. Hence, for comparison we used number of edges 
and execution time (in seconds) for counting four-node 
graphlets in our networks (Fig.1). We can easily see better 
results for more connected graphs. 

 
 

 
 

 
Figure 1. The speedup of algorithm execution vs. number of graph edges 

for three data sets: scale-free, Erdős-Rényi and geometric. 
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Compared to original Orca sequential code, the time 
complexity of our solution is further reduced as can be seen 
from Table 1. 

TABLE 1. TIME COMPLEXITY FOR 4-NODE GRAPHLET COUNTING 

Solution Time complexity 
Genuine Algorithm 1 O(n4) 
Orca O(n3) 
Our solution O(n2) 

where n = |V| denotes the number of vertices. 

Of course, our result holds provided we have enough cores 
in GPU in order to schedule one thread per core (as is the case 
in our experiments). Otherwise, CUDA runtime will schedule 
more threads per core, introducing context switching. Since we 
have non-blocking threads, this would cause overhead that 
would make this part of execution slower than sequential. In 
such a case, we need to activate another device, as we 
suggested in Section V, or even more, deploy additional GPUs.    

VII. CONCLUSION 
Many real-world problems, such as various types of social 

networks, computer networks and biological interactions, have 
been represented as large graphs or networks involving 
millions of vertices. As graph problems grow in size, efficient 
parallel graph processing becomes important as computational 
and memory requirements increase. Our work is based on 
modification of Orca, a new algorithm for counting graphlet 
orbits. The original (sequential) algorithm counts orbits in large 
protein-protein interactions networks 50-100 times faster than 
other state-of-the-art algorithms. Our proposal improves the 
third stage of this algorithm almost two times for higher 
number of edges, by means of simple parallelization using 
commercially available graphic card. In future we plan to 
extend our program in order to parallelize counting of 5-node 
graphlet, since it differs from 4-node algorithm and is more 
complex. We also plan to refine our procedure and to try to 
circumvent dependencies  in first two stages, which will allow 
us to cover the whole algorithm in one kernel with little use of 
synchronization mechanisms.  
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