
INFOTEH-JAHORINA Vol. 14, March 2015.

 - 741 -

A contribution to acceleration of graphlet counting

Aleksandar Milinković
Belgrade University, School of Electrical Engineering

Belgrade, Serbia
amilinko@gmail.com

Stevan Milinković
Union University, School of Computing

Belgrade, Serbia
smilinkovic@raf.edu.rs

Ljubomir Lazić
Metropolitan University, Faculty of Information Technology

Belgrade, Serbia
ljubomir.lazic@metropolitan.ac.rs

Abstract – Graphlets are small non-isomorphic connected
subgraphs used for different kinds of analyses in social networks,
bioinformatics and other areas described by large networks,
where their number can provide a characterization of the
network properties. Much of existing methods for counting the
graphlets are based on direct enumeration. However, in case of
large networks, this type of counting becomes computationally
very demanding. Fortunately, for very sparse networks the
computational cost is much less prohibitive than in dense
networks, leading to the more efficient graphlet counting
algorithms. This work is our first attempt to accelerate one of
such algorithms by parallelization using graphic hardware.

Key words – graphlet; orbit; network; parallel algorithm;

I. INTRODUCTION
The network generally describes a set of objects (nodes), as

well as the relationship between these objects. By studying the
technological, sociological or biological networks we can get
information about the interactions between objects, their
individual characteristics and their links with the characteristics
of the network as a whole.

Graphlet counting is a topologically rigorous way to
characterize the structure around a network node. The number
of appearances of graphlets in the network provides a
description of the network’s structural properties. This method
has been used to solve several network analysis problems such
as comparing networks [1], network alignment [2], network
clustering [3], etc. Unfortunately, graphlet counting can be very
expensive, especially when network is very large.

We need some graphlet definitions here, so we follow [4].
Assume, G(V, E) is a graph, then V is the set of vertices and E
is the set of edges. Each edge e ∈ E can be represented by a
pair of vertices (vi, vj) where, vi, vj ∈ V. A graph is called
simple, if it does not contain a self loop, and at most one edge
exists between two of its vertices. We consider simple,
connected, and undirected graphs. A graph G′ = (V′, E′) is a
subgraph of G if V′ ⊆ V and E′ ⊆ E. A graph G′ = (V′, E′) is a
vertex-induced subgraph of G if V′ ⊆ V and E′ ⊆ E and {e =
(va, vb) : va, vb ∈ V′, e ∈ E, e ∉ E′} = ∅. A vertex-induced
subgraph is a subset of the vertices of a graph G together with
any edges whose both endpoints are in this subset. We will

refer to vertex-induced subgraph as “induced subgraph”. Two
graphs G and G′ are isomorphic, denoted by G ≅ G′, if there
exists a structure-preserving (both adjacency and non-
adjacency preserving) bijection f : V → V'; such a function f is
called an isomorphism from G to G′.

An embedding of a graph G′ in another graph G is a
subgraph S of G, such that S and G′ are isomorphic; when the
subgraph S is a vertex-induced subgraph of G, the embedding
is called an induced embedding. Therefore, graphlets can be
defined as small, non-isomorphic, connected, induced
subgraphs of a large network. We are interested in all possible
graphlets having k vertices, k ∈ {3, 4, 5}. We refer a graphlet
with k vertices, as k-node graphlet. Note that, 1-node graphlet
is simply a vertex, and 2-node graphlet is an edge. A k-node
graphlet is called a tree graphlet if it is a tree, i.e., it has k − 1
edges. A graphlet that is not a tree is called a cyclic graphlet.

An isomorphism from a graph G(V, E) to itself is called an
automorphism. For a finer description, the nodes of every
graphlet are partitioned into a set of automorphism groups
called orbits [1]. Two nodes belong to the same orbit if they
map to each other in some isomorphic projection of the
graphlet onto itself.

The remainder of this paper is organized as follows. The
next section provides background, and compares and contrasts
some graphlet counting algorithms. Section three demonstrates
the need for parallel counting, whereas the fourth section
describes one successful sequential algorithm. The fifth section
describes or main contribution, and the sixth section shows
some of our results. Finally, section seven provides conclusions
and recommendations for future work.

II. RELATED WORK
In terms of complexity, counting all 5-node graphlets in a

graph G has a time complexity of O(|V|5), and therefore
becomes a computational bottleneck. Common approaches to
speed it up include sampling [5]–[7], exploiting pattern
symmetries [8] or using reconfigurable hardware accelerators
based on FPGA chips [9].

There are several software implementations for graphlet
counting that are mainly used in bioinformatics. FANMOD

Results are part of the research that is supported by Ministry of Education
and Science of the Republic of Serbia, Grants No. III-45003 and TR-35026.

 - 742 -

[10] is a network motif detection tool based on sampling
random subgraphs and comparing their counts with those from
random network models. Note that motif is partial subgraphs,
whereas graphlet must be induced subgraph. Besides
implementing a novel sampling algorithm [5] it also provides a
full enumeration procedure for graphlets on 2–8 nodes.
GraphletCounter, described in [11], works as a Cytoscape [12]
plug-in and merges graphlet analysis with visual inspection of
the network.

GraphCrunch [13] is a tool for large network analysis. It
counts graphlets of up to five nodes using an enumeration
procedure with correction for overcounting some of the
graphlets. A well-organized enumeration method imposes
constraints that eliminate the need for isomorphism testing
except for distinguishing between a few different graphlets.
This is further accelerated by comparing the number of edges
and individual node degrees. GraphCrunch has been extended
with a new method for topological network alignment and with
comparison of the networks with some additional mathematical
models [14]. The graphlet counting procedure in this new
version of GraphCrunch remained essentially the same.

Rapid Graphlet Enumerator (RAGE) [15] takes a different
approach to counting four-node graphlets. Instead of counting
the induced subgraphs directly, it reconstructs them from
counts of non-induced subgraphs. For computing the latter, it
uses specifically crafted methods for each of the 6 possible
subgraphs. Unlike FANMOD and GraphCrunch, RAGE works
only for up to four-node graphlets.

An alternative to exact graphlet counting is to adopt
algorithms for approximate counting that offer significant
speedup with a small counting error. This direction has become
popular in some of the recent researches for counting triangles
[16], [17]. Since the cost of graphlet counting is much higher
than the cost of triangle counting, an approximate counting
algorithm for the former will be more useful from a practical
standpoint. In their research [4], the authors propose a method
called Graft to perform the task of approximate counting of
graphlets that have up to five vertices.

III. PARALLEL COUNTING
Graph problems have inherent parallelism, where a task is

performed independently on all vertices of the graph. The
shortest path algorithm is an example, where for a given graph
the shortest path problem for each vertex can be solved in
parallel as an independent task. As graph problems grow in
size, efficient parallel graph processing becomes important as
computational and memory requirements increase.
Unfortunately, traditional solutions that are used to parallelize
mainstream parallel applications do not necessarily work well
for large-scale graph problems. There are a number of
properties that make them poorly matched to computational
methods which are successfully applied in mainstream parallel
applications [9]:

• Graph computations are dictated by the vertex and edge
structure of the graph, and the execution paths are
difficult to analyze and predict using static analysis of the
source code. Parallelism based on partitioning

computations is a challenging task due to lack of
knowledge about the structure of the computations.

• The data in graph problems are unstructured and highly
irregular. This irregular structure of the graph data makes
it difficult to partition the graph data to take advantage of
small and fast on-chip memories, e.g. such as shared
memory and registers in CUDA GPUs.

• Data-driven computations coupled with irregular data
structures results in low memory access locality.

• Many graph algorithms tend to explore the structure of
the graph while performing a relatively small amount of
computations (e.g. counting the neighborhood nodes).

• All of this results in a higher ratio of data access to
computation compared to mainstream scientific and
engineering applications, and combined with poor locality
leads to execution times almost dominated by memory
latency.

Algorithm 1 shows a general template for the graph
algorithm targeted by our work. It consists of a loop that
iterates through all the vertices in the graph. Suppose that each
iteration can be performed as a separate kernel. The outer-loop
represents the coarse-grained parallelism required for our case,
while further fine-grained parallelism may be available within
the graph kernel itself .

Algorithm 1. The counting algorithm for k-node graphlets, k ∈ 3, 4, 5.

for all nodes a of G {
for all adjacent nodes b of a {

for all adjacent nodes c of b {
// finding 3-node graphlets

for all adjacent nodes d of c {
// finding 4-node graphlets

for all adjacent nodes e of d {
// finding 5-node graphlets
}

}
}

}
}

Here we require 72 counters per vertex to enumerate all the
3-, 4-, 5-node graphlets for a given graph [18]. These counters
must be stored in off-chip memory for large graphs. A counter
may be incremented by two or more threads simultaneously
requiring a synchronization mechanism. In the case of a system
with a large number of parallel threads, synchronization due to
high-contention situations can become a performance
bottleneck because of the additional delays introduced by
contention. This issue is often addressed by a combination of a
parallel implementation of the outer loop and a serial
implementation of all the inner loops. The serial
implementation takes the form of a graph kernel, while the
parallel implementation comes from the replication of this
kernel. In other words, several kernels operate in parallel, and
each kernel processes a graph node at a time; i.e. an iteration of
the outer-loop. Implementing the inner loops sequentially on
dedicated parallel processor would most likely result in slower
execution times compared to software implementations..

 - 743 -

Fortunately, there exists an algorithm called Orca (Orbit
Counting Algorithm) [18], which reduces the time complexity
by an order of magnitude by computing the orbit counts using
the relations between them and directly enumerating only
smaller graphlets. This algorithm is sequential in nature,
however it can be parallelized, as suggested by its authors.

IV. A BRIEF DESCRIPTION OF ALGORITHM
Orca proposes a combinatorial method for counting

graphlets and orbit signatures of network nodes. The algorithm
builds a system of equations that connect counts of orbits from
graphlets with up to 5 nodes, which allows to compute all orbit
counts by enumerating just a single one. We use this algorithm
as a starting point for our work.

The core of the algorithm is based on deriving a linear
relationship between the orbit counts of various graphlets
where the right hand side of the equation can be determined
from the graph with an efficient algorithm.

Specifically, algorithm allows for computing, for each node
in the network the node’s graphlet degree vector (i.e. its
authomorphism orbit counts) for all up to k-node
graphlets/orbits simply by computing the same statistics for all
up to (k–1)-node graphlets and for a single k-node
graphlet/orbit. Then, the statistics for the remaining k-node
graphlets/orbits can be computed through a system of equations
of dependencies between different orbits/graphlets. This offers
a significant empirical speed up compared to the existing
methods on real-world networks.

However, although the computation time is reduced by an
order of magnitude as compared to the existing, pure
enumeration-based algorithms, it does not reduce the
theoretical computational complexity of graphlet counting
procedure. The complexity of the procedure is still bounded by
the identification of 4-node (or 5-node) cliques [19].
Nevertheless, it gives impressive results even in case of not-so-
sparse graphs (e.g. up to 40% density on 4-node graphlets).

Right-hand sides of equations contain terms that are
computed from the graph G. Let c(u, v) = |N(u) ∩ N(v)| denote
the number of common neighbors of nodes u and v. Let p(u, v)
denote the number of paths on three nodes that start at node u,
continue with v can compute p(u, v) as p(u, v) = deg(v) − 1 −
c(u, v). If some node x participates in a k-node graphlet Gi, it
also participates in some (k −1)-node graphlet Gj. This can be
seen by removing one of the graphlet’s nodes that are the
farthest away from x. The subgraph induced by the remaining
nodes is connected (any disconnected node would have to be
farther from x than the removed node), so it is isomorphic to
some (k −1)-node graphlet Gj. We will use this observation in
reverse: every four-node graphlet can be constructed by adding
a node to some three-node graphlet(s). To find the relations
between counts of orbits in four-node graphlets for a certain
node x, we enumerate all three-node graphlets touching the
node and count their possible extensions with the fourth node.

There are only two three-node graphlets and relatively few
possible extensions. Investigating all possibilities in a similar
manner yields 10 equations with 11 variables that correspond
to counts of 11 orbits in four-node graphlets [18].

Right-hand sides depend on the graph G and need to be
computed for each point x. To accelerate their computation, we
precompute values of c(u, v) and p(u, v). In all equations,
except for the last one, c(u, v) is computed on pairs of nodes (u,
v) that are connected; in p(u, v), they are connected by the
definition of p. It therefore suffices to precompute c(u, v) and
p(u, v) only for all pairs of connected nodes u and v, which
requires O(e) space. The last equation, in which the new node
closes a cycle, is treated separately. Nodes x and z are not
adjacent but we can pre-compute the number of paths of length
2 that start at node x and end at node y. This requires O(n)
space for each point; since we compute orbits for one point at a
time, this memory can be recycled.

2

12 14
, | , [{ , , }]

3 (,) 1
y z y z G x y z G

o o c y z
< ≅

+ = −∑

2

13 14
, | , [{ , , }]

2 6 ((,) 1) ((,) 1)
y z y z G x y z G

o o c x y c x z
< ≅

+ = − + −∑

2

10 13
, | , [{ , , }]

2 (,) (,)
y z y z G x y z G

o o p y z p z y
< ≅

+ = +∑

2

11 13
, | , [{ , , }]

2 2 (,) (,)
y z y z G x y z G

o o p y x p z x
< ≅

+ = +∑

1

7 11
, | , , (), [{ , , }]

6 2 ((,) 1) ((,) 1)
y z y z y z N x G x y z G

o o p y x p z x
< ∈ ≅

+ = − + −∑

1

5 8
, | , , (), [{ , , }]

2 (,) (,)
y z y z y z N x G x y z G

o o p x y p x z
< ∈ ≅

+ = +∑

1

6 9
, | , (), [{ , , }]

2 2 (,) 1
y z x z N y G x y z G

o o p x y
∈ ≅

+ = −∑

1

9 12
, | , (), [{ , , }]

2 2 (,)
y z x z N y G x y z G

o o c y z
∈ ≅

+ = ∑

1

4 8
, | , (), [{ , , }]

2 (,)
y z x z N y G x y z G

o o p y z
∈ ≅

+ = ∑

1

8 12
, | , (), [{ , , }]

2 2 (,) 1
y z x z N y G x y z G

o o c x z
∈ ≅

+ = −∑

In these equations ≅ denotes graph isomorphism (e.g.,
G[{x, y, z}], a subgraph on nodes x, y, z, is isomorphic to G1, a
path with three nodes).

V. METHODS
From original source code [22], we can see that the

algorithm is implemented in three stages:

stage 1 - precomputing common nodes;
stage 2 - counting full graphlets;
stage 3 - building systems of equations relating orbits for
every node. After right-hand sides are determined, all
equations are solved.

Our measurements show that in first two stages, the
algorithm spends only 24% of total execution time, and third
stage consumes the rest of execution time. Also in the first two
stages, there are precedence relations among computations. In

 - 744 -

contrast, in the third stage results are mutually independent.
Therefore, we put more emphasis on the third stage.

Our code is implemented on an x86 Linux machine
(Ubuntu 3.2.0-60.91) with the graphic card nVIDIA GTX 690
(compute capability 3.0). The GTX 690 features two Kepler-
based GeForce GPUs (same architecture as Tesla K-series
GPU accelerators), 4GB of GDDR5 RAM and 3072 CUDA
cores. As a part of the installed CUDA Toolkit, we used Nsight
Eclipse Edition 5.5.0 to edit, build and debug our application.

A. Graph representation on CUDA
A graph G(V, E) is commonly represented as an adjacency

matrix. For sparse graphs such a representation wastes a lot of
space. Adjacency list is a more compact representation for
graphs. Because of variable size of edge lists per vertex, we
take an advantage of CUDA which allows arrays of arbitrary
sizes to be created and hence can represent graph using
adjacency lists. We represent graphs in compact adjacency list
form, with adjacency lists packed into a single large array.
Each vertex points to the starting position of its own adjacency
list in this large array of edges. Vertices of graph G(V, E) are
represented as an array Va. Another array Ea of adjacency lists
stores the edges with edges of vertex i+1 immediately
following the edges of vertex i for all i in V. Each entry in the
vertex array Va corresponds to the starting index of its
adjacency list in the edge array Ea. Each entry of the edge array
Ea refers to a vertex in vertex array Va.

B. CUDA kernels
We have implemented three kernels, one for each stage,

which are executed sequentially, one after another. Each kernel
is launched with 1024 blocks, and 1024 threads per block. Each
thread is assigned to one graph vertex. Since in this work we
implement only 4-node counting, it runs as follows.

Initialization

• Reading graph from input file
• Checking for duplicate undirected edges, self loops

and other irregularities
• Determining degree of nodes

Stage 1
• Device memory allocation and initialization
• Copy vertices and edges pairs, and adjacency list
• Launch kernel for precomputing common vertices
• Precompute triangles that span over edges

Stage 2
• Launch kernel for counting full graphlets
• Each device thread performs its own binary search in

order to find adjacent nodes

Stage 3
• Building and solving systems of equations
• Per thread binary search is also executed here

For execution time measurements on GPU we used

recordings of event occurrences, as suggested in [20].

If we want to engage both GTX690 GPUs (devices 0 and 1)
we need to do some kind of graph partitioning, which is not a
trivial task. Then we have to start two separate threads in host,
and since nowadays hosts are likely to be multicore, we should
schedule these threads to different cores. Of course, we have to
allocate portable pinned host memory here in order to take
advantage of this 2GPU/2CPU threads arrangement.

VI. RESULTS AND DISCUSSION
We have tested our code with three sets of input data,

available with the original code [21]. They were generated
random graphs using Barabási-Albert, Erdős-Rényi and
geometric algorithms [22]. All sets had in common the number
of vertices (1000), however number of edges varied from 4000
to 200000. Hence, for comparison we used number of edges
and execution time (in seconds) for counting four-node
graphlets in our networks (Fig.1). We can easily see better
results for more connected graphs.

Figure 1. The speedup of algorithm execution vs. number of graph edges

for three data sets: scale-free, Erdős-Rényi and geometric.

 - 745 -

Compared to original Orca sequential code, the time
complexity of our solution is further reduced as can be seen
from Table 1.

TABLE 1. TIME COMPLEXITY FOR 4-NODE GRAPHLET COUNTING

Solution Time complexity
Genuine Algorithm 1 O(n4)
Orca O(n3)
Our solution O(n2)

where n = |V| denotes the number of vertices.

Of course, our result holds provided we have enough cores
in GPU in order to schedule one thread per core (as is the case
in our experiments). Otherwise, CUDA runtime will schedule
more threads per core, introducing context switching. Since we
have non-blocking threads, this would cause overhead that
would make this part of execution slower than sequential. In
such a case, we need to activate another device, as we
suggested in Section V, or even more, deploy additional GPUs.

VII. CONCLUSION
Many real-world problems, such as various types of social

networks, computer networks and biological interactions, have
been represented as large graphs or networks involving
millions of vertices. As graph problems grow in size, efficient
parallel graph processing becomes important as computational
and memory requirements increase. Our work is based on
modification of Orca, a new algorithm for counting graphlet
orbits. The original (sequential) algorithm counts orbits in large
protein-protein interactions networks 50-100 times faster than
other state-of-the-art algorithms. Our proposal improves the
third stage of this algorithm almost two times for higher
number of edges, by means of simple parallelization using
commercially available graphic card. In future we plan to
extend our program in order to parallelize counting of 5-node
graphlet, since it differs from 4-node algorithm and is more
complex. We also plan to refine our procedure and to try to
circumvent dependencies in first two stages, which will allow
us to cover the whole algorithm in one kernel with little use of
synchronization mechanisms.

REFERENCES
[1] N. Pržulj, “Biological network comparison using graphlet degree

distribution,” Bioinformatics, vol. 23, no. 2, pp. e177–e183, Jan. 2007.
[2] O. Kuchaiev, T. Milenkovic, V. Memisevic, W. Hayes, and N. Przulj,

“Topological network alignment uncovers biological function and
phylogeny,” Journal of The Royal Society Interface, vol. 7, no. 50, pp.
1341–1354 , Oct. 2010.

[3] T. Milenković, V. Memišević, A.K. Ganesan, and N. Pržulj, “Systems-
level cancer gene identification from protein interaction network
topology applied to melanogenesis-related functional genomics data,” J.
of The Royal Society Interface, vol. 7, no. 44, pp. 423–437, 2010.

[4] M. Rahman, M. Bhuiyan, and M. Al Hasan, “GRAFT: An Approximate
Graphlet Counting Algorithm for Large Graph Analysis”, in Proceedings
of the 21st ACM international conference on Information and knowledge
management (CIKM’12), Maui, HI, USA, 2012, pp. 1467–1471.

[5] N. Kashtan, S. Itzkovitz, R. Milo, and U. Alon, “Efficient sampling
algorithm for estimating subgraph concentrations and detecting network
motifs,” Bioinformatics, vol. 20, no. 11, pp.1746–1758, July 2004.

[6] S. Wernicke, “Efficient detection of network motifs,” IEEE/ACM
transactions on computational biology and bioinformatics, vol. 3, no. 4,
pp. 347–359, Oct. – Dec. 2006.

[7] N. Pržulj, D.G. Corneil, and I. Jurisica, “Efficient estimation of graphlet
frequency distributions in protein-protein interaction networks,”
Bioinformatics, vol. 22, no. 8, pp. 974–980, Apr. 2006.

[8] A. Stoica and C. Prieur, “Structure of Neighborhoods in a Large Social
Network,” in International Conference on Computational Science and
Engineering (CSE’09), Vancouver, BC, Canada, 2009, pp. 26–33.

[9] B. Betkaoui, D.B. Thomas, W. Luk, and N. Przulj, “A framework for
FPGA acceleration of large graph problems: Graphlet counting case
study,” in 2011 International Conference on Field-Programmable
Technology (FPT), New Delhi, India, 2011, pp. 1–8.

[10] S. Wernicke F. Rasche, “FANMOD: a tool for fast network motif
detection,” Bioinformatics, vol. 22, no. 9, pp. 1152–1153, May 2006.

[11] C. Whelan and K. Sönmez, “Computing graphlet signatures of network
nodes and motifs in Cytoscape with GraphletCounter,” Bioinformatics,
vol. 28, no. 2, pp. 290–291, Jan. 2012.

[12] Available: http://www.cytoscape.org/
[13] T. Milenković, J. Lai, and N. Pržulj, “GraphCrunch: a tool for large

network analyses,” BMC Bioinformatics, vol. 9, no. 70, pp. 1 – 11, Jan.
2008.

[14] O. Kuchaiev, A. Stevanović, W. Hayes, and N. Pržulj, “GraphCrunch 2:
Software tool for network modeling, alignment and clustering,” BMC
bioinformatics, vol. 12, no. 24, pp. 1 – 13, Jan. 2011.

[15] D. Marcus and Y. Shavitt, “RAGE - A rapid graphlet enumerator for
large networks,” Computer Networks, vol. 56, no. 2, pp. 810–819, Feb.
2012.

[16] C.E. Tsourakakis, U. Kang, G. L. Miller, and C. Faloutsos, “DOULION:
Counting triangles in massive graphs with a coin,” in Proceedings of the
15th ACM SIGKDD international conference on Knowledge discovery
and data mining (KDD’09), Paris, France, 2009, pp. 837–846.

[17] C.E. Tsourakakis, “Counting triangles in real-world networks using
projections,” Knowledge and Information Systems, vol. 26, no. 3, pp.
501–520, Mar. 2011.

[18] T. Hočevar and J. Demšar, “A combinatorial approach to graphlet
counting,” Bioinformatics, vol. 30, no. 4, pp. 559–565, Feb. 2014.

[19] R.D. Luce and A.D. Perry, “A method of matrix analysis of group
structure,” Psychometrika, vol. 14, no. 2, pp. 95–116, June 1949.

[20] M. Harris, “How to Implement Performance Metrics in CUDA C/C++,”
nVIDIA Developer Zone, Nov. 2012.

[21] Availiable:http://devblogs.nvidia.com/parallelforall/how-implement-
performance-metrics-cuda-cc/

[22] Available: http://www.biolab.si/supp/orca/#download
[23] M. Newman. Networks: An Introduction. Oxford University Press, 2010.

