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Abstract – To fully take advantage of the opportunity offered by 
the Internet of Things (IoT), manufacturers of embedded systems 
must meet multiple challenges, which cannot be addressed 
without a real time operating system. In this paper we propose 
some criteria that are important for the selection of such an 
operating system, which could be used for different classes of IoT 
platforms. We give a short survey of open-source solutions that 
are applicable in the IoT systems based both on ARM Cortex-M 
and TI MSP430 microcontrollers. Selected operating system was 
ported to the target test platform, but it turned out that porting 
was not as trivial as it seemed at first glance. The proposed 
platform was tested in a wireless environment with an intention 
to be applied in home automation. 
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I. INTRODUCTION 
Internet of Things (IoT) provides communication between 

different objects integrated into a global network as well as the 
people and these objects. In order to achieve this, it is 
necessary to ensure that the cost of such facilities is low, and a 
software that enables their operation should be adapted to the 
environment in terms of performance, memory size and power 
consumption. Today, the IoT can be associated with all that is 
called “smart”, e.g. smart cities, smart metering, smart energy, 
building automation, connected home, smart grid, eHeatlh, etc. 
Simply put, the IoT is the network of physical objects 
containing embedded technology that can be accessed through 
the Internet [1].  

The components that are building blocks of IoT have very 
limited resources, with more restrictions than it is usual for 
embedded systems. Therefore, the term constrained device [2] 
was recently introduced in order to define the difference 
between such a system and desktop computer. This especially 
applies to the significantly reduced energy, lower computing 
power, as well as significantly reduced amount of memory. 
Bearing in mind that the constrained devices are mainly based 
on microcontrollers, which usually don’t have memory 
management units, their system software exclude solutions  
that are common in embedded systems. In addition, there is a 
need to work in real time in some applications, which further 
narrows our choice. Consequently, real-time operating systems 
must satisfy performance demands, offer hard real-time 

response and handle memory constraints, but increasingly they 
also need to deliver capabilities demanded by the new, highly 
connected, security conscious, remotely managed world of 
machine to machine networks and IoT. 

In this work our goal was to build IoT platforms with the 
following characteristics [2]: 

First platform: 
• Class of Constrained Devices: C2 
• Class of Energy Limitation: E9 (no direct quantitative 

limitations to available energy) 
• Strategy of Using Power for Communication: P9 

(Always-on) 
• ARM Cortex-M microcontroller 

Second platform: 
• Classes of Constrained Devices: C0 and C1 
• Class of Energy Limitation: E1 (Period energy-limited)  
• Strategy of Using Power for Communication: P1 (Low-

power) 
• TI MSP430 microcontroller 

A. Linux solution 
Linux certainly is a robust, developer-friendly OS that has 

been getting attention as a platform for IoT devices. Linux has 
matured into a mainstream embedded operating system for 
many applications. Yet, Linux has a major disadvantage when 
compared to a real-time operating system: memory footprint. 
Even though Linux can be trimmed down by removing tools 
and system services that are not needed in embedded systems, 
it still remains a large piece of software. It simply will not run 
on 8 or 16-bit MCUs, and even many newer 32-bit MCUs do 
not have enough onboard RAM for the Linux kernel. The 
ARM Cortex-M series is a good example. There are hundreds 
of different MCUs that are based on the popular Cortex-M 
architecture, which typically have only a few hundred kilobytes 
of onboard memory. Linux will never run on these chips. 

B. Industrial or consumer application 
The software requirements for industrial and consumer IoT 

devices can differ quite a bit. Although they might share a 
common kernel and low-level services, the middleware 
required by their applications can be radically different. 
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An industrial IoT device, such as a wireless sensor node, is 
a low-power, low-cost device that may run entirely on battery. 
Such a device might typically use a Cortex-M MCU. It would 
make use of a highly efficient network protocol such as 
6LoWPAN to reduce transmission time and save power. And it 
would communicate over short distances wirelessly using 
Bluetooth or low-power Wi-Fi, or else use Ethernet. 

On the other side, the software requirements for consumer 
IoT device are much greater. It might need a Java VM, and 
may well make use of a vertical market protocol such as 
AllSeen, Continua Alliance, HomePlug/HomeGrid, or 2net. 
Such a device might use a Cortex-M or a Cortex-A processor. 

C. Scalability 
A common engineering solution for networked embedded 

systems is to use two processors in the device. In this 
arrangement, an 8 or 16-bit MCU is used for the sensor or 
actuator, while a 32-bit processor is used for the network 
interface. That second processor runs an RTOS. 

IoT devices will still contain a mixture of small and large 
MCUs for years to come. A scalable RTOS that runs on a 
variety of 16 and 32-bit MCUs will allow us to meet tight 
memory requirements and reduce processor demands. 

D. Modularity 
The IoT device will require a modular operating system 

that separates the core kernel from middleware, protocols, and 
applications. The reasons are ease of development, and keeping 
the memory footprint of the software to a minimum. Using a 
modular RTOS simplifies our development process, especially 
if we are developing a family of devices with different 
capabilities. Relying on a common core allows the entire 
family of devices to share a common code base, while each 
device is customized with only the middleware and protocol 
stacks required by the application. 

This approach also allows for a smaller memory footprint 
in our device. Unlike a monolithic operating system that 
bundles an entire suite of software together, a modular RTOS 
allows us to tailor the embedded software for our device, 
requiring less RAM and flash memory, and  reducing the costs. 

E. Connectivity 
Network connectivity is essential to the Internet of Things. 

Whether we are talking about wireless sensor nodes in a 
factory, or networked medical devices in a hospital, the 
industry now expects embedded devices to be connected to 
each other, and to communicate with corporate or public 
networks. Our RTOS of choice should support communications 
standards and protocols such as IEEE 802.15.4, Wi-Fi, and 
Bluetooth. Our device must be able to connect to IP networks 
using bandwidth-efficient protocols such as 6LoWPAN. It also 
must be able to use wired media, such as Ethernet. 

An RTOS will allow us to select the specific protocol 
stacks we need, saving memory on the device, and reducing 
our costs. And it can help us retrofit existing devices with new 
connectivity options without reworking the core of our 
embedded software. 

The operating system for the IoT must take into account all 
the constraints of hardware while maintaining a high usability 
for developers. It must function well on systems with different 
hardware capabilities and capacities. In addition, it is desirable 
to have some standard interface (e.g., POSIX), for good 
portability of applications, for minimizing maintenance, as well 
as to provide the ability to easily connect to other devices on 
the Internet. However, the ease of use for developers is crucial. 
In addition to the C language, the use of other programming 
languages and libraries is highly desirable, for example C ++ 
and STL, but they strongly depend on the development 
toolchain. Not all of them have this capability, and even in 
those cases where it exists, this task remained a challenge on 
IoT platforms.  

II. A SHORT SURVEY 
Operating System (OS) for IoT must be designed 

purposely, regardless if it is an open-source or proprietary, 
which means that it must take into account all the constraints 
that exist in such devices.  

Depending on their primary purpose, operating systems 
have different characteristics, but one of the main things which 
is necessary to take into account is the kernel structure. Kernel 
implementation may also have historical reasons, but in 
embedded systems they are of minor importance. Therefore, 
designers have monolithic, layered and microkernel 
architectures at their disposal.  

Another important aspect in choosing or designing the 
operating system is scheduler. Scheduling strategy directly 
affects the system’s ability to operate in real time, as well as to 
support different priorities and ways of interacting with the 
user. It also has a significant impact on energy consumption of 
the entire device. Some operating systems provide several 
different scheduling algorithms and policies. 

Finally, the third aspect in the design is the programming 
model. On some operating systems, all tasks are executed in 
the same context and without partitioning of the memory 
address space. Other systems support multi-threading, where 
each task executes within its own thread and has its own stack. 

The programming model is closely related to selected 
programming language, because it can affect the 
implementation of the operating system itself, and also 
determine which programming language will be used by 
developers when working with this particular operating system. 

A. Contiki and Tiny OS 
Contiki and Tiny OS are not real time systems, but their 

presence on the market  is dominant (mainly in wireless sensor 
networks) and therefore they are used for reference. The same 
reason applies to Linux.   

Contiki operating system has a layered architecture, while 
Tiny OS is built upon a monolithic kernel, as is the case with 
Linux. The Contiki system is event driven and is similar to that 
of TinyOS, which uses a FIFO strategy. Linux on the other 
hand, uses a scheduler that guarantees fair schedule for all 
tasks, even allowing preemption by timer. Only Linux with 
real-time extensions has a scheduler for work in real-time. 
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Programming models with Contiki and TinyOS are defined 
by events in a way that all tasks are executed in the same 
context, although they offer a partial multithreading support. 
Contiki uses a programming language similar to C, but can’t 
use certain keywords. TinyOS is written in the language called 
nesC, which is similar but not compatible with the C language. 
Linux, on the other hand, supports true multithreading, it is 
written in standard C, and it offers support for various 
programming languages. Compared to Linux, TinyOS and 
Contiki do not possess several functionalities that would be a 
great relief to developers, such as programming in standard C 
and C ++, the standard multithreading, as well as support for 
real-time (see Table 1) [3].  

TABLE 1. KEY CHARACTERISTICS OF TINYOS, CONTIKI, RIOT, AND LINUX. 
( ) FULL SUPPORT, (○) PARTIAL SUPPORT, (X) NO SUPPORT. 

OS min RAM min ROM C support C++ 
support 

TinyOS < 1kB < 4kB x x 
Contiki < 2kB < 30kB ○ x 
RIOT ~ 1.5kB ~ 5kB   
Linux ~ 1MB ~ 1MB  

 

OS multi-
threading 

MCU w/o 
MMU modularity real-time 

Tiny OS ○  x x 
Contiki ○  ○ ○ 
RIOT     
Linux  x ○ ○ 
 
TinyOS version 2.1 introduces TOSThreads, fully 

preemptable user-level application threads library [4], in which 
programmer can use C and nesC APIs, but outside of that still 
has to use only nesC. 

A TinyOS has to be present in the form of source code or as 
a library during the compilation of user programs (static 
linking), providing a common binary program which is then 
programmed into device. This approach simplifies some things, 
such as better resource usage analysis, or more efficient 
optimization. On the other hand, changes in customer 
applications require a redistribution of the entire operating 
system. Unlike TinyOS, Contiki has the ability to load 
individual applications or services during the execution of the 
operating system on the device, which resembles the 
mechanisms on general purpose computers. 

On top of Contiki basic event-driven kernel other execution 
models can be used. Instead of the simple event handlers 
processes can use Protothreads [5]. Protothreads are simple 
forms of normal threads in a multi-threaded environment. 
Protothreads are stackless so they save their state information 
in the private memory of the process. Like the event handler 
Protothreads can not be preempted and run until the it puts 
itself into a waiting state until it is scheduled again.  

Along with event-driven kernel, Contiki also contains a 
preemptive multithreading library. It is statically linked with 
application program only if the program explicitly calls some 
of its functions. However, each thread from this library must 
have its own stack, which is not the case in Protothreads [6 ]. 

B. FreeRTOS 
FreeRTOS is a real-time kernel/scheduler designed to be 

small enough to run on a microcontroller. Typically a kernel 
binary image will be in the region of 4kB to 9kB [7]. 

The scheduler in FreeRTOS has two operating modes: 
Preemptive and Cooperative. Cooperative scheduling avoids 
the reentrance problems faced by preemptive scheduling. This 
is because tasks that are being executed can only be interrupted 
at positions permitted by developer and not arbitrarily. It is 
important that although real-time performance is affected at 
task levels, interrupts continue to enjoy real-time responses by 
using semaphores. Tasks with highest priority are executed 
first, and for more than one high priority tasks, round-robin 
mechanism is used. 

In FreeRTOS, when any task is created, the kernel does two 
memory allocations. The time required for memory allocation 
in the Task Control Block is fixed. The time required for the 
initialization of task stack is proportional to the complexity of 
the task, i.e. the stack size required. 

FreeRTOS has three models for allocation of memory 
spaces. The simplest models allocate a fixed memory to each 
task but do not deallocate it. Thus memory cannot be reused 
and leads to the wastage of memory space. The second model 
allows allocation and de allocation and uses a best-fit algorithm 
to find free space in memory. The most complex model uses 
custom algorithms for specific requirements of task. 

The greatest disadvantage of freeRTOS is that it doesn’t 
implement advanced mechanism for shared resources like 
priority ceilings to avoid priority inversion. 

C. FreeRTOS+Nabto 
FreeRTOS doesn’t have HAL/device drivers, and that is the 

way which ensures it’s great portability. However, the main 
consequence for IoT application is that FreeRTOS doesn’t 
provide any comunication at all. Fortunately, by combining the 
FreeRTOS with Nabto [8] peer-to-peer remote access 
communication platform, we can harness a simple and secure 
HTML5 or native application interface for the end users, along 
with an adaptive and flexible data-acquisition interface for data 
collection, central analysis and monitoring systems. With 
Nabto, the IoT device only handles a small amount of data – 
outgoing data from its sensors and incoming commands. The 
remainder of any web pages seen by the user is served by a 
remote server in the cloud. Page seen by the user are assembled 
from the two sources in the PC or phone by a Nabto plug-in in 
its web browser. In use, the plug-in goes first to the cloud 
server. The server knows where both items are and serves a 
specification file to generate a web server interface, mediating 
direct connection to the device. The external device can work 
behind firewall, doesn’t need a file system, and doesn’t need 
TCP/IP stack. For development, and for use across a local, no 
cloud server is needed. Instead the web content is cached on 
the user’s PC or smart phone. If local, the plug-in will just 
search and come up with a list of devices to connect to. 
FreeRTOS+Nabto enabled devices can also be accessed over 
the local network in the absence of Internet connectivity. 
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D. ChibiOS/RT 
ChibiOS/RT [9] is designed for deeply embedded real time 

applications where execution efficiency and compact code are 
important requirements. This RTOS is characterized by its high 
portability, compact size and, mainly, by its architecture 
optimized for extremely efficient context switching. While the 
ChibiOS/RT kernel can be used even alone, the RTOS also 
offers other subsystems, e.g. an HAL abstracting many 
common device drivers and integration with other open source 
projects like file systems, networking stacks etc. 

Everything in the kernel is static, i.e. nowhere memory is 
allocated or freed. Actually, there are three allocator 
subsystems but those are optional and not part of core OS. 
Dynamic services are built as a layer on top of the fully static 
kernel. The kernel has no internal tables, and there is nothing 
that must be configured at compile time or that can overflow at 
run time. There are no upper bounds, the internal structures are 
all dynamic even if all the objects are statically allocated. 

System APIs have no error conditions, all the previous 
points are finalized to this objective. Everything we can invoke 
in the kernel is designed to not fail unless we pass bad 
parameters, (e.g. stray pointers). The APIs are not slowed down 
by parameter checks. Parameter and consistency checks do 
exist, but only when the related debug switches are activated. 
All the static core APIs always succeed if correct parameters 
are passed. Each API function should have the parameters we 
would expect for that function and do just one thing, with no 
options. 

The OS code is fast in the first place, that is, the focus is on 
speed and execution efficiency and then on code size. This 
does not mean that the OS is large. The kernel size with all the 
subsystems activated weighs around 5.5kB for STM32 Cortex-
M3 microcontroller. 

E. RT-Thread 
RT-Thread is an open source real-time operating system for 

embedded devices [10]. The kernel has real-time multi-tasking 
scheduler, semaphores, mutexes, mail boxes, message queues 
etc. In addition, this RTOS has support for various device 
drivers and component-based services, e.g. a shell, virtual file 
system (FAT, YAFFS, UFFS, ROM/RAM file system etc), 
TCP/IP protocol stack (lwIP), POSIX interface, etc. It is 
possible for user to add new components. The kernel itself 
occupies as low as 3kB in ROM and 1kB in RAM.  

Real-time threads within the operating system use an 
object-oriented design approach, and the built-in kernel object 
management system that can access / manage all kernel 
objects. Kernel objects contain most of the kernel facilities, and 
can be static or dynamic objects. Therefore, system does not 
depend on the specific memory allocation, and scalability has 
been greatly enhanced. 

Priority-based scheduling algorithm is fully preemptive, 
supporting up to 256 thread priorities. The same priority 
threads can be scheduled in round-robin fashion. Scheduler 
finds the next thread for execution in constant time (O (1)). The 
system does not limit the number of threads. It depends only on 
memory associated with a specific physical platform.  

RT-Thread system supports semaphores, mutexes and other 
interthread synchronization mechanism. Mutexes use priority 
inheritance mechanisms. System also has an event, mailbox, 
and message queue communication mechanisms. Multi-event 
(“or trigger”, “and trigger”) is supported when thread waits for 
multiple events. Mailboxes are of fixed length (4 bytes), which 
provide higher efficiency than message queue. System supports 
static and dynamic heap memory pool management. Kernel 
memory manager uses Buddy and/or Slab allocator. 

Our main problem with RT-Thread is the documentation, 
which is written in Chinese language. 

F. Erika Enterprise 
Erika Enterprise [11] is a free of charge, open-source RTOS 

implementation of the ISO 17356 API (derived from the 
OSEK/VDX API), and it is OSEK/VDX certified.  The kernel 
is organized in a modular fashion and it is fully configurable 
both in terms of services and kernel objects (tasks, resources, 
and events). It allows the user to include only those services 
strictly required by the application, thus achieving a minimal 
memory footprint of 2kB, up to more complete configurations. 
It is available for a wide variety of 8, 16, and 32 bit MCUs 
(including multicores) and supports advanced scheduling 
mechanisms. The kernel modular design allows reusing the 
software modules in different applications, speeding up the 
development of new projects or the upgrade of existing projects 
to more powerful architectures, and simplifying the 
maintenance. 

The kernel consists of two layers: the Hardware Abstraction 
Layer (HAL) and the Kernel Layer. The HAL represents the 
very low level kernel layer; therefore, different HALs are 
required for different processors (notice that the Kernel Layer 
does not change when the Erika system is ported on different 
platforms) The HAL contains the hardware dependent code to 
manage the context switches and to handle the interrupt 
requests. The Kernel Layer is composed by a set of modules 
for task management and real-time scheduling policies. Fixed 
priority with preemption threshold and Earliest Deadline First 
(EDF) with preemption threshold are currently supported by 
the kernel. Both use the Stack Resource Policy (SRP) to share 
resources between threads and to share the system stack among 
the threads while preserving time predictability. 

Erika supports stack sharing to reduce RAM usage, which 
is very important for systems with very little RAM. That is, 
there is no need for a separate stack for all the tasks. On the 
other side, it does not have some of the primitives, like 
message passing (although some prototypes are there since 
longtime, but were never integrated in the main build).  Erika 
has support for Scilab/Scicos code generation, and also 
supports ZigBee protocols using openZB [12]. 

G. RIOT 
RIOT (Real-time operating system for IoT) fills the gap 

between operating systems of wireless sensor networks and 
traditional operating systems. In addition, this operating system 
is designed to take care about energy efficiency of the device, 
to occupy as less memory space as possible, and to have a 
unique API, regardless of the underlying hardware. 
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RIOT is based on a microkernel architecture, which is 
inherited from FireKernel [13], thereby supporting 
multithreading using a standard API. Packed with features 
inherited from FireKernel, RIOT also provides support for 
C++, enabling the use of powerful libraries, such as Wiselib 
[14]. As standard, it includes support for TCP / IP stack 
network. This modular approach makes RIOT robust against 
failures of its individual components, providing high reliability 
with a programmer-friendly API. 

RIOT allows programmers to create as many threads as 
they need. The only constraint is the amount of available 
memory and the size of the stack for each thread. Thanks to the 
kernel message API and using these threads, it is possible to 
implement distributed systems in a simple way. 

To fulfill strong real-time requirements RIOT enforces 
constant periods for kernel tasks (e.g., scheduler run, inter-
process communication, timer operations). An important 
prerequisite for guaranteed runtimes of O(1) is the exclusive 
use of static memory allocation in the kernel. Yet, dynamic 
memory management is provided for applications. Constant 
runtime of the scheduler is achieved by using a fixed-sized 
circular linked list of threads.  

Low complexity of kernel functions is a main factor for the 
energy efficiency of RIOT. The duration and occurrence of 
context switching is minimized. In RIOT context switching is 
performed in two cases: (1) a corresponding kernel operation 
itself is called, e.g. a mutex locking or creation of a new thread, 
or (2) an interrupt causes a thread switch. Fortunately, the first 
case will occur rarely, since in majority of applications every 
thread is created once. On the other hand, when RIOT’s kernel 
gets called out of an interrupt service routine, saving the old 
thread’s context is not required and thus a task switch can be 
performed in very few clock cycles. 

III. CLASS C2 IOT PLATFORM IMPLEMENTATION 
As we have seen, each RTOS is very good in its particular 

domain, but taking into consideration our requirements, we 
have chosen RIOT. On the high end in terms of hardware MCU 
and memory capacities, RIOT competes mainly with Linux. 
Compared to Linux, RIOT can scale down to orders of 
magnitude less memory requirements and supports built-in 
energy efficiency and real-time capabilities. On the low end in 
terms of hardware MCU/memory capacities, RIOT competes 
mainly with Contiki, TinyOS, and FreeRTOS (see Table 1). 
Compared to Contiki and TinyOS, RIOT offers real-time 
capabilities and multi-threading. In contrast to FreeRTOS, 
RIOT provides native energy efficiency and a full-featured OS 
including up-to-date, free, open-source interoperable network 
stacks (e.g., 6LoWPAN), instead of just a kernel. RIOT also 
offers standard POSIX APIs and the ability to code in standard 
programming languages (C and C++) using standard 
debugging tools, thus reduces the learning curve of developers 
and the software development lifecycle process.  

Default protocol integration in RIOT is mainly driven by 
latest IETF/IRTF activities [15]. Currently, RIOT supports 
basic networking protocols including 6LoWPAN, RPL, IPv6, 
TCP, UDP, CoAP, and provides CCNlite to experiment with 
content-centric networking. 

The C++ capabilities of RIOT enable powerful libraries 
such as the Wiselib, which includes algorithms for routing, 
clustering, timesync, localization, and security. 

There are a number of other topics in current development, 
such as dynamic linking support, Python interpreter, CBOR (an 
alternative for JSON), energy profiler, etc. 

RIOT currently supports the number of microcontroller 
families: ARM7, Cortex-M, AVR/ATmega and MPS430, on 
different platforms, such as Intel Galileo, Betty, TelosB, STM 
Discovery, Arduino Mega 2560, etc.  

In addition, to overcome the issue of specialized hardware 
availability, RIOT can also be run as a native process on Linux 
and MacOS. This facilitates development because such a native 
process can be analyzed using readily available tools (e.g., gdb, 
Valgrind). A RIOT process is accessible via shell, the UART 
interface, or the virtual link layer interface (TAP).  

At the moment, we describe our results only for the first 
platform (class C2 - see section I). As a proof of concept, our 
target hardware for RIOT operating system is the development 
board EasyMx PRO v7 for STM32 ARM manufactured by 
Mikroelektronika [16]. It contains many on-board modules 
necessary for development variety of applications, including 
multimedia, Ethernet, USB, CAN and other, as well as 
mikroProg programmer and debugger. Board is delivered with 
MCU card containing STM32F407VGT6. It is in many aspects 
very similar to the already supported STM32F4discovery. 

However, porting of the original source code for M4 
platform (RIOT/cpu/stm32f4/) was not so straightforward as it 
should be. The main reason was the MikroC compiler. 
Directory RIOT/cpu/arm_common/ contains hardware specific, 
yet common routines for Cortex-M processors. All of them are 
written in assembly language, however porting them to MikroC 
compiler was not trivial task. MikroC does not allow separate 
files containing only assembler functions. Instead, assembly 
language routines should be embedded in some C file, and 
within C function, which often unnecessary generates a stack 
frame. Their assembler is quite restrictive in terms of syntax, 
and it is documented only with a few sentences in Help file. 
For example, interrupt handler should be wrapped with C 
function, which in its declaration tells compiler where is the 
vector in interrupt vector table for that particular interrupt.  

In assembly code callable from C, care should be taken of 
compiler optimization level in order to avoid different methods 
of parameter passing (stack or registers). The same applies 
when using microprocessor registers within assembly code.  

Other specific code we had to write were device drivers for 
radio modules. Two different radio boards were used: 802.15.4 
on all boards, plus 802.11 on data sink board. 

Mikroelektronika BEE Click is an accessory board 
featuring 2.4 GHz IEEE 802.15.4 radio transceiver 
module MRF24J40MA (Microchip). This module includes an 
integrated PCB antenna and matching circuitry and is 
connected to the microcontroller via a SPI interface. Virtual 
functions from RIOT radio interface driver are implemented 
directly by using routines given in BEE click example for 
ARM Cortex-M [17].  
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WiFi PLUS Click features Microchip MRF24WB0MA, 
IEEE 802.11 compliant module as well as MCW1001 
(Microchip) companion controller with on-board TCP/IP stack 
and appropriate 802.11 connection manager. WiFi PLUS click 
communicates with target board via UART interface. Due to 
highly modular design of the operating system, it was much 
easier to write device drivers for these radio modules.   

During our preliminary test, eight nodes (including the 
sink) were in the same room, all within radio range with each 
other, resembling the full mesh network. Nodes are 
programmed as servers using socket API (part of network 
related POSIX wrapper of RIOT), i.e. the application threads 
are blocked in accept, until the request for connection is 
received. Only one connection is possible at the time. There is 
no payload in incoming packet. Immediately upon establishing 
connection, the server reads integer value from ADC channel 3 
and sends it back to the sink node. The sink node application is 
programmed as client, i.e. it polls all nodes by executing 
instruction connect to the particular address/port and waiting 
for the response. After the message is received from the RIOT 
node, it is forwarded via WiFi PLUS Click module toward the 
desktop computer. 

IV. CONCLUSION 
We have made analysis of some existing solutions and 

chose an open-source operating system which we ported and 
compiled in environment that was not originally written for. 
Namely, original RIOT is written by means of the GCC 
toolchain, which has a very little in common with our 
development environment, including the C compiler itself. On 
the other side, unique C language development tools from 
Mikroelektronika are made to support broad range of very 
different platforms, such as ARM STM32, PIC, PIC32, dSPIC, 
AVR, Tiva and even 8051 series of microcontrollers on 
number of development boards. That is much larger hardware 
base than originally provided by RIOT based on the GCC 
toolchain and appropriate drivers. 

The idea behind our work is to build a common 
hardware/software IoT platform that can allow us to make 
smart objects by just connecting them and building an 
application for them. The chosen operating system for our 
platform (RIOT) is a real-time multi-threading operating 
system aiming to ease development across a wide range of IoT 
devices. Designed for energy-efficiency, reliability, real-time 
capabilities, small memory footprint, modularity, and uniform 
API access, RIOT provides several libraries such as Wiselib, as 
well as a full IPv6 stack for connecting constrained systems to 
the Internet. Unfortunately, porting RIOT to Mikroelektronika 

development board turned out to be not so simple, mainly 
because it was not possible to use their development tools to 
build the system in a straight manner. For example, MikroC for 
ARM uses a proprietary encoded (compressed) library 
format. Mikroelektronika is secretive and protective of their 
libraries and compiler inner workings so we cannot use, or 
make conversion from external object files. On the other hand, 
their development and add-on boards are very well 
documented, including detailed schematic diagrams. Therefore, 
they remain in our attention.  
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