
INFOTEH-JAHORINA Vol. 14, March 2015.

 - 504 -

Choosing the right RTOS for IoT platform
Aleksandar Milinković

Belgrade University, School of Electrical Engineering
Belgrade, Serbia

amilinko@gmail.com

Stevan Milinković
Union University, School of Computing

Belgrade, Serbia
smilinkovic@raf.edu.rs

Ljubomir Lazić
Metropolitan University, Faculty of Information Technology

Belgrade, Serbia
ljubomir.lazic@metropolitan.ac.rs

Abstract – To fully take advantage of the opportunity offered by
the Internet of Things (IoT), manufacturers of embedded systems
must meet multiple challenges, which cannot be addressed
without a real time operating system. In this paper we propose
some criteria that are important for the selection of such an
operating system, which could be used for different classes of IoT
platforms. We give a short survey of open-source solutions that
are applicable in the IoT systems based both on ARM Cortex-M
and TI MSP430 microcontrollers. Selected operating system was
ported to the target test platform, but it turned out that porting
was not as trivial as it seemed at first glance. The proposed
platform was tested in a wireless environment with an intention
to be applied in home automation.

Key words – RTOS; constrained devices; Internet of Things;

I. INTRODUCTION
Internet of Things (IoT) provides communication between

different objects integrated into a global network as well as the
people and these objects. In order to achieve this, it is
necessary to ensure that the cost of such facilities is low, and a
software that enables their operation should be adapted to the
environment in terms of performance, memory size and power
consumption. Today, the IoT can be associated with all that is
called “smart”, e.g. smart cities, smart metering, smart energy,
building automation, connected home, smart grid, eHeatlh, etc.
Simply put, the IoT is the network of physical objects
containing embedded technology that can be accessed through
the Internet [1].

The components that are building blocks of IoT have very
limited resources, with more restrictions than it is usual for
embedded systems. Therefore, the term constrained device [2]
was recently introduced in order to define the difference
between such a system and desktop computer. This especially
applies to the significantly reduced energy, lower computing
power, as well as significantly reduced amount of memory.
Bearing in mind that the constrained devices are mainly based
on microcontrollers, which usually don’t have memory
management units, their system software exclude solutions
that are common in embedded systems. In addition, there is a
need to work in real time in some applications, which further
narrows our choice. Consequently, real-time operating systems
must satisfy performance demands, offer hard real-time

response and handle memory constraints, but increasingly they
also need to deliver capabilities demanded by the new, highly
connected, security conscious, remotely managed world of
machine to machine networks and IoT.

In this work our goal was to build IoT platforms with the
following characteristics [2]:

First platform:
• Class of Constrained Devices: C2
• Class of Energy Limitation: E9 (no direct quantitative

limitations to available energy)
• Strategy of Using Power for Communication: P9

(Always-on)
• ARM Cortex-M microcontroller

Second platform:
• Classes of Constrained Devices: C0 and C1
• Class of Energy Limitation: E1 (Period energy-limited)
• Strategy of Using Power for Communication: P1 (Low-

power)
• TI MSP430 microcontroller

A. Linux solution
Linux certainly is a robust, developer-friendly OS that has

been getting attention as a platform for IoT devices. Linux has
matured into a mainstream embedded operating system for
many applications. Yet, Linux has a major disadvantage when
compared to a real-time operating system: memory footprint.
Even though Linux can be trimmed down by removing tools
and system services that are not needed in embedded systems,
it still remains a large piece of software. It simply will not run
on 8 or 16-bit MCUs, and even many newer 32-bit MCUs do
not have enough onboard RAM for the Linux kernel. The
ARM Cortex-M series is a good example. There are hundreds
of different MCUs that are based on the popular Cortex-M
architecture, which typically have only a few hundred kilobytes
of onboard memory. Linux will never run on these chips.

B. Industrial or consumer application
The software requirements for industrial and consumer IoT

devices can differ quite a bit. Although they might share a
common kernel and low-level services, the middleware
required by their applications can be radically different.

Results are part of the research that is supported by Ministry of Education
and Science of the Republic of Serbia, Grants No. III-45003 and TR-35026.

 - 505 -

An industrial IoT device, such as a wireless sensor node, is
a low-power, low-cost device that may run entirely on battery.
Such a device might typically use a Cortex-M MCU. It would
make use of a highly efficient network protocol such as
6LoWPAN to reduce transmission time and save power. And it
would communicate over short distances wirelessly using
Bluetooth or low-power Wi-Fi, or else use Ethernet.

On the other side, the software requirements for consumer
IoT device are much greater. It might need a Java VM, and
may well make use of a vertical market protocol such as
AllSeen, Continua Alliance, HomePlug/HomeGrid, or 2net.
Such a device might use a Cortex-M or a Cortex-A processor.

C. Scalability
A common engineering solution for networked embedded

systems is to use two processors in the device. In this
arrangement, an 8 or 16-bit MCU is used for the sensor or
actuator, while a 32-bit processor is used for the network
interface. That second processor runs an RTOS.

IoT devices will still contain a mixture of small and large
MCUs for years to come. A scalable RTOS that runs on a
variety of 16 and 32-bit MCUs will allow us to meet tight
memory requirements and reduce processor demands.

D. Modularity
The IoT device will require a modular operating system

that separates the core kernel from middleware, protocols, and
applications. The reasons are ease of development, and keeping
the memory footprint of the software to a minimum. Using a
modular RTOS simplifies our development process, especially
if we are developing a family of devices with different
capabilities. Relying on a common core allows the entire
family of devices to share a common code base, while each
device is customized with only the middleware and protocol
stacks required by the application.

This approach also allows for a smaller memory footprint
in our device. Unlike a monolithic operating system that
bundles an entire suite of software together, a modular RTOS
allows us to tailor the embedded software for our device,
requiring less RAM and flash memory, and reducing the costs.

E. Connectivity
Network connectivity is essential to the Internet of Things.

Whether we are talking about wireless sensor nodes in a
factory, or networked medical devices in a hospital, the
industry now expects embedded devices to be connected to
each other, and to communicate with corporate or public
networks. Our RTOS of choice should support communications
standards and protocols such as IEEE 802.15.4, Wi-Fi, and
Bluetooth. Our device must be able to connect to IP networks
using bandwidth-efficient protocols such as 6LoWPAN. It also
must be able to use wired media, such as Ethernet.

An RTOS will allow us to select the specific protocol
stacks we need, saving memory on the device, and reducing
our costs. And it can help us retrofit existing devices with new
connectivity options without reworking the core of our
embedded software.

The operating system for the IoT must take into account all
the constraints of hardware while maintaining a high usability
for developers. It must function well on systems with different
hardware capabilities and capacities. In addition, it is desirable
to have some standard interface (e.g., POSIX), for good
portability of applications, for minimizing maintenance, as well
as to provide the ability to easily connect to other devices on
the Internet. However, the ease of use for developers is crucial.
In addition to the C language, the use of other programming
languages and libraries is highly desirable, for example C ++
and STL, but they strongly depend on the development
toolchain. Not all of them have this capability, and even in
those cases where it exists, this task remained a challenge on
IoT platforms.

II. A SHORT SURVEY
Operating System (OS) for IoT must be designed

purposely, regardless if it is an open-source or proprietary,
which means that it must take into account all the constraints
that exist in such devices.

Depending on their primary purpose, operating systems
have different characteristics, but one of the main things which
is necessary to take into account is the kernel structure. Kernel
implementation may also have historical reasons, but in
embedded systems they are of minor importance. Therefore,
designers have monolithic, layered and microkernel
architectures at their disposal.

Another important aspect in choosing or designing the
operating system is scheduler. Scheduling strategy directly
affects the system’s ability to operate in real time, as well as to
support different priorities and ways of interacting with the
user. It also has a significant impact on energy consumption of
the entire device. Some operating systems provide several
different scheduling algorithms and policies.

Finally, the third aspect in the design is the programming
model. On some operating systems, all tasks are executed in
the same context and without partitioning of the memory
address space. Other systems support multi-threading, where
each task executes within its own thread and has its own stack.

The programming model is closely related to selected
programming language, because it can affect the
implementation of the operating system itself, and also
determine which programming language will be used by
developers when working with this particular operating system.

A. Contiki and Tiny OS
Contiki and Tiny OS are not real time systems, but their

presence on the market is dominant (mainly in wireless sensor
networks) and therefore they are used for reference. The same
reason applies to Linux.

Contiki operating system has a layered architecture, while
Tiny OS is built upon a monolithic kernel, as is the case with
Linux. The Contiki system is event driven and is similar to that
of TinyOS, which uses a FIFO strategy. Linux on the other
hand, uses a scheduler that guarantees fair schedule for all
tasks, even allowing preemption by timer. Only Linux with
real-time extensions has a scheduler for work in real-time.

 - 506 -

Programming models with Contiki and TinyOS are defined
by events in a way that all tasks are executed in the same
context, although they offer a partial multithreading support.
Contiki uses a programming language similar to C, but can’t
use certain keywords. TinyOS is written in the language called
nesC, which is similar but not compatible with the C language.
Linux, on the other hand, supports true multithreading, it is
written in standard C, and it offers support for various
programming languages. Compared to Linux, TinyOS and
Contiki do not possess several functionalities that would be a
great relief to developers, such as programming in standard C
and C ++, the standard multithreading, as well as support for
real-time (see Table 1) [3].

TABLE 1. KEY CHARACTERISTICS OF TINYOS, CONTIKI, RIOT, AND LINUX.
() FULL SUPPORT, (○) PARTIAL SUPPORT, (X) NO SUPPORT.

OS min RAM min ROM C support C++
support

TinyOS < 1kB < 4kB x x
Contiki < 2kB < 30kB ○ x
RIOT ~ 1.5kB ~ 5kB
Linux ~ 1MB ~ 1MB

OS multi-
threading

MCU w/o
MMU modularity real-time

Tiny OS ○ x x
Contiki ○ ○ ○
RIOT
Linux x ○ ○

TinyOS version 2.1 introduces TOSThreads, fully

preemptable user-level application threads library [4], in which
programmer can use C and nesC APIs, but outside of that still
has to use only nesC.

A TinyOS has to be present in the form of source code or as
a library during the compilation of user programs (static
linking), providing a common binary program which is then
programmed into device. This approach simplifies some things,
such as better resource usage analysis, or more efficient
optimization. On the other hand, changes in customer
applications require a redistribution of the entire operating
system. Unlike TinyOS, Contiki has the ability to load
individual applications or services during the execution of the
operating system on the device, which resembles the
mechanisms on general purpose computers.

On top of Contiki basic event-driven kernel other execution
models can be used. Instead of the simple event handlers
processes can use Protothreads [5]. Protothreads are simple
forms of normal threads in a multi-threaded environment.
Protothreads are stackless so they save their state information
in the private memory of the process. Like the event handler
Protothreads can not be preempted and run until the it puts
itself into a waiting state until it is scheduled again.

Along with event-driven kernel, Contiki also contains a
preemptive multithreading library. It is statically linked with
application program only if the program explicitly calls some
of its functions. However, each thread from this library must
have its own stack, which is not the case in Protothreads [6].

B. FreeRTOS
FreeRTOS is a real-time kernel/scheduler designed to be

small enough to run on a microcontroller. Typically a kernel
binary image will be in the region of 4kB to 9kB [7].

The scheduler in FreeRTOS has two operating modes:
Preemptive and Cooperative. Cooperative scheduling avoids
the reentrance problems faced by preemptive scheduling. This
is because tasks that are being executed can only be interrupted
at positions permitted by developer and not arbitrarily. It is
important that although real-time performance is affected at
task levels, interrupts continue to enjoy real-time responses by
using semaphores. Tasks with highest priority are executed
first, and for more than one high priority tasks, round-robin
mechanism is used.

In FreeRTOS, when any task is created, the kernel does two
memory allocations. The time required for memory allocation
in the Task Control Block is fixed. The time required for the
initialization of task stack is proportional to the complexity of
the task, i.e. the stack size required.

FreeRTOS has three models for allocation of memory
spaces. The simplest models allocate a fixed memory to each
task but do not deallocate it. Thus memory cannot be reused
and leads to the wastage of memory space. The second model
allows allocation and de allocation and uses a best-fit algorithm
to find free space in memory. The most complex model uses
custom algorithms for specific requirements of task.

The greatest disadvantage of freeRTOS is that it doesn’t
implement advanced mechanism for shared resources like
priority ceilings to avoid priority inversion.

C. FreeRTOS+Nabto
FreeRTOS doesn’t have HAL/device drivers, and that is the

way which ensures it’s great portability. However, the main
consequence for IoT application is that FreeRTOS doesn’t
provide any comunication at all. Fortunately, by combining the
FreeRTOS with Nabto [8] peer-to-peer remote access
communication platform, we can harness a simple and secure
HTML5 or native application interface for the end users, along
with an adaptive and flexible data-acquisition interface for data
collection, central analysis and monitoring systems. With
Nabto, the IoT device only handles a small amount of data –
outgoing data from its sensors and incoming commands. The
remainder of any web pages seen by the user is served by a
remote server in the cloud. Page seen by the user are assembled
from the two sources in the PC or phone by a Nabto plug-in in
its web browser. In use, the plug-in goes first to the cloud
server. The server knows where both items are and serves a
specification file to generate a web server interface, mediating
direct connection to the device. The external device can work
behind firewall, doesn’t need a file system, and doesn’t need
TCP/IP stack. For development, and for use across a local, no
cloud server is needed. Instead the web content is cached on
the user’s PC or smart phone. If local, the plug-in will just
search and come up with a list of devices to connect to.
FreeRTOS+Nabto enabled devices can also be accessed over
the local network in the absence of Internet connectivity.

 - 507 -

D. ChibiOS/RT
ChibiOS/RT [9] is designed for deeply embedded real time

applications where execution efficiency and compact code are
important requirements. This RTOS is characterized by its high
portability, compact size and, mainly, by its architecture
optimized for extremely efficient context switching. While the
ChibiOS/RT kernel can be used even alone, the RTOS also
offers other subsystems, e.g. an HAL abstracting many
common device drivers and integration with other open source
projects like file systems, networking stacks etc.

Everything in the kernel is static, i.e. nowhere memory is
allocated or freed. Actually, there are three allocator
subsystems but those are optional and not part of core OS.
Dynamic services are built as a layer on top of the fully static
kernel. The kernel has no internal tables, and there is nothing
that must be configured at compile time or that can overflow at
run time. There are no upper bounds, the internal structures are
all dynamic even if all the objects are statically allocated.

System APIs have no error conditions, all the previous
points are finalized to this objective. Everything we can invoke
in the kernel is designed to not fail unless we pass bad
parameters, (e.g. stray pointers). The APIs are not slowed down
by parameter checks. Parameter and consistency checks do
exist, but only when the related debug switches are activated.
All the static core APIs always succeed if correct parameters
are passed. Each API function should have the parameters we
would expect for that function and do just one thing, with no
options.

The OS code is fast in the first place, that is, the focus is on
speed and execution efficiency and then on code size. This
does not mean that the OS is large. The kernel size with all the
subsystems activated weighs around 5.5kB for STM32 Cortex-
M3 microcontroller.

E. RT-Thread
RT-Thread is an open source real-time operating system for

embedded devices [10]. The kernel has real-time multi-tasking
scheduler, semaphores, mutexes, mail boxes, message queues
etc. In addition, this RTOS has support for various device
drivers and component-based services, e.g. a shell, virtual file
system (FAT, YAFFS, UFFS, ROM/RAM file system etc),
TCP/IP protocol stack (lwIP), POSIX interface, etc. It is
possible for user to add new components. The kernel itself
occupies as low as 3kB in ROM and 1kB in RAM.

Real-time threads within the operating system use an
object-oriented design approach, and the built-in kernel object
management system that can access / manage all kernel
objects. Kernel objects contain most of the kernel facilities, and
can be static or dynamic objects. Therefore, system does not
depend on the specific memory allocation, and scalability has
been greatly enhanced.

Priority-based scheduling algorithm is fully preemptive,
supporting up to 256 thread priorities. The same priority
threads can be scheduled in round-robin fashion. Scheduler
finds the next thread for execution in constant time (O (1)). The
system does not limit the number of threads. It depends only on
memory associated with a specific physical platform.

RT-Thread system supports semaphores, mutexes and other
interthread synchronization mechanism. Mutexes use priority
inheritance mechanisms. System also has an event, mailbox,
and message queue communication mechanisms. Multi-event
(“or trigger”, “and trigger”) is supported when thread waits for
multiple events. Mailboxes are of fixed length (4 bytes), which
provide higher efficiency than message queue. System supports
static and dynamic heap memory pool management. Kernel
memory manager uses Buddy and/or Slab allocator.

Our main problem with RT-Thread is the documentation,
which is written in Chinese language.

F. Erika Enterprise
Erika Enterprise [11] is a free of charge, open-source RTOS

implementation of the ISO 17356 API (derived from the
OSEK/VDX API), and it is OSEK/VDX certified. The kernel
is organized in a modular fashion and it is fully configurable
both in terms of services and kernel objects (tasks, resources,
and events). It allows the user to include only those services
strictly required by the application, thus achieving a minimal
memory footprint of 2kB, up to more complete configurations.
It is available for a wide variety of 8, 16, and 32 bit MCUs
(including multicores) and supports advanced scheduling
mechanisms. The kernel modular design allows reusing the
software modules in different applications, speeding up the
development of new projects or the upgrade of existing projects
to more powerful architectures, and simplifying the
maintenance.

The kernel consists of two layers: the Hardware Abstraction
Layer (HAL) and the Kernel Layer. The HAL represents the
very low level kernel layer; therefore, different HALs are
required for different processors (notice that the Kernel Layer
does not change when the Erika system is ported on different
platforms) The HAL contains the hardware dependent code to
manage the context switches and to handle the interrupt
requests. The Kernel Layer is composed by a set of modules
for task management and real-time scheduling policies. Fixed
priority with preemption threshold and Earliest Deadline First
(EDF) with preemption threshold are currently supported by
the kernel. Both use the Stack Resource Policy (SRP) to share
resources between threads and to share the system stack among
the threads while preserving time predictability.

Erika supports stack sharing to reduce RAM usage, which
is very important for systems with very little RAM. That is,
there is no need for a separate stack for all the tasks. On the
other side, it does not have some of the primitives, like
message passing (although some prototypes are there since
longtime, but were never integrated in the main build). Erika
has support for Scilab/Scicos code generation, and also
supports ZigBee protocols using openZB [12].

G. RIOT
RIOT (Real-time operating system for IoT) fills the gap

between operating systems of wireless sensor networks and
traditional operating systems. In addition, this operating system
is designed to take care about energy efficiency of the device,
to occupy as less memory space as possible, and to have a
unique API, regardless of the underlying hardware.

 - 508 -

RIOT is based on a microkernel architecture, which is
inherited from FireKernel [13], thereby supporting
multithreading using a standard API. Packed with features
inherited from FireKernel, RIOT also provides support for
C++, enabling the use of powerful libraries, such as Wiselib
[14]. As standard, it includes support for TCP / IP stack
network. This modular approach makes RIOT robust against
failures of its individual components, providing high reliability
with a programmer-friendly API.

RIOT allows programmers to create as many threads as
they need. The only constraint is the amount of available
memory and the size of the stack for each thread. Thanks to the
kernel message API and using these threads, it is possible to
implement distributed systems in a simple way.

To fulfill strong real-time requirements RIOT enforces
constant periods for kernel tasks (e.g., scheduler run, inter-
process communication, timer operations). An important
prerequisite for guaranteed runtimes of O(1) is the exclusive
use of static memory allocation in the kernel. Yet, dynamic
memory management is provided for applications. Constant
runtime of the scheduler is achieved by using a fixed-sized
circular linked list of threads.

Low complexity of kernel functions is a main factor for the
energy efficiency of RIOT. The duration and occurrence of
context switching is minimized. In RIOT context switching is
performed in two cases: (1) a corresponding kernel operation
itself is called, e.g. a mutex locking or creation of a new thread,
or (2) an interrupt causes a thread switch. Fortunately, the first
case will occur rarely, since in majority of applications every
thread is created once. On the other hand, when RIOT’s kernel
gets called out of an interrupt service routine, saving the old
thread’s context is not required and thus a task switch can be
performed in very few clock cycles.

III. CLASS C2 IOT PLATFORM IMPLEMENTATION
As we have seen, each RTOS is very good in its particular

domain, but taking into consideration our requirements, we
have chosen RIOT. On the high end in terms of hardware MCU
and memory capacities, RIOT competes mainly with Linux.
Compared to Linux, RIOT can scale down to orders of
magnitude less memory requirements and supports built-in
energy efficiency and real-time capabilities. On the low end in
terms of hardware MCU/memory capacities, RIOT competes
mainly with Contiki, TinyOS, and FreeRTOS (see Table 1).
Compared to Contiki and TinyOS, RIOT offers real-time
capabilities and multi-threading. In contrast to FreeRTOS,
RIOT provides native energy efficiency and a full-featured OS
including up-to-date, free, open-source interoperable network
stacks (e.g., 6LoWPAN), instead of just a kernel. RIOT also
offers standard POSIX APIs and the ability to code in standard
programming languages (C and C++) using standard
debugging tools, thus reduces the learning curve of developers
and the software development lifecycle process.

Default protocol integration in RIOT is mainly driven by
latest IETF/IRTF activities [15]. Currently, RIOT supports
basic networking protocols including 6LoWPAN, RPL, IPv6,
TCP, UDP, CoAP, and provides CCNlite to experiment with
content-centric networking.

The C++ capabilities of RIOT enable powerful libraries
such as the Wiselib, which includes algorithms for routing,
clustering, timesync, localization, and security.

There are a number of other topics in current development,
such as dynamic linking support, Python interpreter, CBOR (an
alternative for JSON), energy profiler, etc.

RIOT currently supports the number of microcontroller
families: ARM7, Cortex-M, AVR/ATmega and MPS430, on
different platforms, such as Intel Galileo, Betty, TelosB, STM
Discovery, Arduino Mega 2560, etc.

In addition, to overcome the issue of specialized hardware
availability, RIOT can also be run as a native process on Linux
and MacOS. This facilitates development because such a native
process can be analyzed using readily available tools (e.g., gdb,
Valgrind). A RIOT process is accessible via shell, the UART
interface, or the virtual link layer interface (TAP).

At the moment, we describe our results only for the first
platform (class C2 - see section I). As a proof of concept, our
target hardware for RIOT operating system is the development
board EasyMx PRO v7 for STM32 ARM manufactured by
Mikroelektronika [16]. It contains many on-board modules
necessary for development variety of applications, including
multimedia, Ethernet, USB, CAN and other, as well as
mikroProg programmer and debugger. Board is delivered with
MCU card containing STM32F407VGT6. It is in many aspects
very similar to the already supported STM32F4discovery.

However, porting of the original source code for M4
platform (RIOT/cpu/stm32f4/) was not so straightforward as it
should be. The main reason was the MikroC compiler.
Directory RIOT/cpu/arm_common/ contains hardware specific,
yet common routines for Cortex-M processors. All of them are
written in assembly language, however porting them to MikroC
compiler was not trivial task. MikroC does not allow separate
files containing only assembler functions. Instead, assembly
language routines should be embedded in some C file, and
within C function, which often unnecessary generates a stack
frame. Their assembler is quite restrictive in terms of syntax,
and it is documented only with a few sentences in Help file.
For example, interrupt handler should be wrapped with C
function, which in its declaration tells compiler where is the
vector in interrupt vector table for that particular interrupt.

In assembly code callable from C, care should be taken of
compiler optimization level in order to avoid different methods
of parameter passing (stack or registers). The same applies
when using microprocessor registers within assembly code.

Other specific code we had to write were device drivers for
radio modules. Two different radio boards were used: 802.15.4
on all boards, plus 802.11 on data sink board.

Mikroelektronika BEE Click is an accessory board
featuring 2.4 GHz IEEE 802.15.4 radio transceiver
module MRF24J40MA (Microchip). This module includes an
integrated PCB antenna and matching circuitry and is
connected to the microcontroller via a SPI interface. Virtual
functions from RIOT radio interface driver are implemented
directly by using routines given in BEE click example for
ARM Cortex-M [17].

 - 509 -

WiFi PLUS Click features Microchip MRF24WB0MA,
IEEE 802.11 compliant module as well as MCW1001
(Microchip) companion controller with on-board TCP/IP stack
and appropriate 802.11 connection manager. WiFi PLUS click
communicates with target board via UART interface. Due to
highly modular design of the operating system, it was much
easier to write device drivers for these radio modules.

During our preliminary test, eight nodes (including the
sink) were in the same room, all within radio range with each
other, resembling the full mesh network. Nodes are
programmed as servers using socket API (part of network
related POSIX wrapper of RIOT), i.e. the application threads
are blocked in accept, until the request for connection is
received. Only one connection is possible at the time. There is
no payload in incoming packet. Immediately upon establishing
connection, the server reads integer value from ADC channel 3
and sends it back to the sink node. The sink node application is
programmed as client, i.e. it polls all nodes by executing
instruction connect to the particular address/port and waiting
for the response. After the message is received from the RIOT
node, it is forwarded via WiFi PLUS Click module toward the
desktop computer.

IV. CONCLUSION
We have made analysis of some existing solutions and

chose an open-source operating system which we ported and
compiled in environment that was not originally written for.
Namely, original RIOT is written by means of the GCC
toolchain, which has a very little in common with our
development environment, including the C compiler itself. On
the other side, unique C language development tools from
Mikroelektronika are made to support broad range of very
different platforms, such as ARM STM32, PIC, PIC32, dSPIC,
AVR, Tiva and even 8051 series of microcontrollers on
number of development boards. That is much larger hardware
base than originally provided by RIOT based on the GCC
toolchain and appropriate drivers.

The idea behind our work is to build a common
hardware/software IoT platform that can allow us to make
smart objects by just connecting them and building an
application for them. The chosen operating system for our
platform (RIOT) is a real-time multi-threading operating
system aiming to ease development across a wide range of IoT
devices. Designed for energy-efficiency, reliability, real-time
capabilities, small memory footprint, modularity, and uniform
API access, RIOT provides several libraries such as Wiselib, as
well as a full IPv6 stack for connecting constrained systems to
the Internet. Unfortunately, porting RIOT to Mikroelektronika

development board turned out to be not so simple, mainly
because it was not possible to use their development tools to
build the system in a straight manner. For example, MikroC for
ARM uses a proprietary encoded (compressed) library
format. Mikroelektronika is secretive and protective of their
libraries and compiler inner workings so we cannot use, or
make conversion from external object files. On the other hand,
their development and add-on boards are very well
documented, including detailed schematic diagrams. Therefore,
they remain in our attention.

REFERENCES
[1] A. Milinković, S. Milinković, and Lj. Lazić, “Some experiences in

building IoT platform”, Telfor ‘14, Belgrade, Serbia, 25-27 Nov. 2014.
[2] C. Bormann, M. Ersue, and A. Keranen, Terminology for Constrained-

Node Networks, IETF, RFC 7228, May 2014.
[3] O. Hahm, E. Baccelli, M. Günes, M. Wählisch, and T. C. Schmidt,

"RIOT OS: Towards an OS for the Internet of Things," Proc. of the 32nd
IEEE International Conference on Computer Communications
(INFOCOM), Poster Session, April 2013.

[4] W. P. McCartney, and N. Sridhar, “Stackless preemptive multi-threading
for TinyOS,” in 2011 International Conference on Distributed
Computing in Sensor Systems and Workshops, Barcelona, Spain, 2011,
pp. 1–8,

[5] A. Dunkels, O. Schmidt, T. Voigt, and M. Ali, “Protothreads:
Simplifying Event-Driven Programming of Memory-Constrained
Embedded Systems,” in Proc. of the 4th International Conference on
Embedded Networked Sensor Systems, Boulder, Colorado, USA, pp.
29–42.

[6] T. Reusing, “Comparison of Operating Systems TinyOS and Contiki,”
Seminar SN SS2012, Network Architectures and Services, August 2012,
pp. 7–13.

[7] FreeRTOS. Availiable: http://www.freertos.org/
[8] Nabto. Available: http://nabto.com/
[9] ChibiOS/RT. Available: http://www.chibios.org/dokuwiki/doku.php
[10] RT-Thread. Available: http://www.rt-thread.org/
[11] Erika Enterprise. Available: http://www.erika-enterprise.com/
[12] opneZB. Available: http://www.open-zb.net/
[13] H. Will, K. Schleiser, and J. H. Schiller, “A real-time kernel for wireless

sensor networks employed in rescue scenarios”, in Proc. of IEEE
Conference on Local Computer Networks (LCN), Zürich, Switzerland,
2009, pp. 834–841.

[14] T. Baumgartner, I. Chatzigiannakis, S. Fekete, C. Koninis, A. Kröller,
and A. Pyrgelis, “Wiselib: A Generic Algorithm Library for
Heterogeneous Sensor Networks,” Wireless Sensor Networks,
LNCS, vol. 5970, 2010, pp 162-177.

[15] A. Y. Ding, J. Korhonen, T. Savolainen, M. Kojo, J. Ott, S. Tarkoma,
and J. Crowcroft, “Bridging the Gap Between Internet Standardization
and Networking Research,” SIGCOMM Comput. Commun. Rev., vol.
44, no. 1, pp. 56–62, Jan. 2014.

[16] http://www.mikroe.com/easymx-pro/stm32/
[17] http://www.libstock.com/projects/view/242/bee-click-example/

