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Abstract— In this paper, artificial neural networks (ANNs) are 

used for power amplifier (PA) modelling and distortion 

compensation for Long Term Evolution (LTE) signals. The 

model is based on a powerful nonlinear autoregressive with 

exogenous inputs (NARX) ANN architecture, which produces 

accurate results for different LTE signals, thus confirming the 

solution’s adaptability.   
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I.  INTRODUCTION  

Wireless systems require high data rates to serve growing 
user demands which LTE aims to fulfill through capacity and 
spectral efficiency [1]. Capacity and spectral efficiency require 
linearity of components in the transmitter, which in turn limits 
energy efficiency. On the other hand, the transfer characteristic 
of the transmitter is highly nonlinear when used in an energy-
efficient way. This is mostly due to the power amplifier’s 
(PA’s) inherent nonlinearity, but the I/Q modulator also 
contributes to the distortion. The transmitted signal is distorted, 
causing errors and limiting capacity and spectral efficiency. 

Several ways have been developed to deal with this trade-
off between capacity and energy efficiency, out of which 
digital predistortion (DPD) became prevalent due to its 
flexibility, simplicity and efficiency [2] - [6]. The idea of DPD 
is a rather simple one: one first has to model the distortions the 
transmitter introduces and then predistort the signal with the 
complete inverse. Thus, once the signal is predistorted in the 
DPD and subsequently distorted in the I/Q modulator and PA, 
it comes out distortion-free. Researchers have used this 
technique extensively [2] - [6], developing predistortion 
methods for PA [2], [3], and for joint PA and I/Q modulator 
effects [4] – [6]. Although the PA causes most of the distortion 
in the transmitter because of its nonlinearity, added I/Q 
modulator impairments can significantly degrade the 
performance of DPD developed to deal with PA nonlinearity 
only [7], [9] – [11]. Hence, joint impairments models are 
generally preferable to two-step solutions. However, after 

developing successful linearization of joint impairments, 
verification should be done for PA distortion only. This serves 
as an independent litmus test of model generality, as well as 
presenting the use case scenario of a transmitter with an almost 
ideal I/Q modulator. 

Therefore, in this paper, we test the proposed artificial 
neural networks (ANN) model from [6] further, by first 
modelling and then compensating for PA distortion only, 
without I/Q modulator imbalances. Tests were done for 
experimentally acquired LTE signals of different bandwidths 
and centre frequencies, to assess the adaptability of the model. 
Moreover, a different view on ANNs modelling capability is 
provided by presenting signal statistics of the measured and 
predicted data, as an added evaluation metric. 

The paper is organized as follows: section II describes the 
measurement setup, section III explains the ANN model used 
for PA distortion in this paper, whereas section IV presents PA 
modelling and compensation results, along with appropriate 
signal statistics. Section V concludes the paper. 

II. MEASUREMENT SETUP 

Data required for modelling were experimentally acquired 
using measurement equipment by Agilent Technologies 
(Fig.1). LTE signals were generated in baseband using 
MATLAB and subsequently fed into the Vector Signal 
Generator (VSG), MXG N5182A. The MXG signal generator 
performed digital to analogue conversion as well as 
upconversion to radiofrequency (RF). The RF analogue signal 
was fed to the PA’s input and Vector Signal Analyzer (VSA) 
4406A which performed downconversion to  baseband. Agilent 
Distortion Suite Software was used to record the complex (real 
- I and imaginary – Q signal component) baseband signal, 
postprocessed in MATLAB. 

Test signals used were 64QAM OFDM LTE signals of       
3 MHz and 1.4 MHz bandwidth, modulated at 880 MHz and 
2140 MHz carrier frequencies respectively. In total, three 
different test signals were used for this paper: 3 MHz signal at 
1 dB compression point (P1dB), 3 MHz signal at 2 dB back-off   
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Figure 1.  Measurement setup 

from P1dB, and 1.4 MHz signal at 2 dB back-off from P1dB. 
The PA that served as a device-under-test (DUT) for 
experiments was the two-stages driver and CFH 2162-P3 (with 
14 dB gain, 37 dBm P1dB). Data collection interval lasted     
10 ms, gathering 100 000 data points with the sampling 
frequency of 10.24 MHz. Gathered data were divided into 
ANN training, validation (cross-validation) and test sets, 
needed for successful modelling, as explained in section III.  

III. ANN MODEL 

Since LTE specifies the use of different signal bandwidths 
and transmitting frequencies, an adaptable DPD solution is 
preferred. ANNs, with adaptability and universal 
approximation [8] as capabilities, have great potential for 
modelling nonlinear distortion [2] – [4], [6]. Hence, after 
developing joint impairments model in [6], we used the 
solution proposed and trained it for PA behavioural modelling 
with different LTE signals. The ANN used is a nonlinear 
autoregressive with exogenous inputs (NARX) [8] - essentially 
a time delayed feedforward ANN with feedback connections 
from the output at the input - allowing more powerful 
modelling by including both input and output memory 
elements. The parameters of the NARX model  are as follows: 
number of neurons in the first and second hidden layer of 15 
and 15; input and output memory depth of 2 and 5; activation 
function for the neurons in the hidden layers and output layer 
tansig, tansig and purelin respectively; and synaptic weight 
initialization interval of  [-0.8, 0.8]. Levenberg–Marquard 
learning algorithm was employed for network training. Model 
generation and testing was done in MATLAB. 

To measure the model’s accuracy, normalized mean square 
error (NMSE) was used, together with power spectral density 
(PSD) graphs and amplitude-to-amplitude (AM-AM) and 
amplitude-to-phase (AM-PM) characteristics. A numerical 
degree of signal matching, NMSE, is defined as follows: 

�������� = 10 log�� �∑ ������������������������������� !
∑ ���������� ��� ! ��������� � "      (1) 

where #  and $  stand for values of real and imaginary 
components of the signal produced by the ANN and 
#%&'()&% 	 and $%&'()&% for the target values collected in the 
measurement process. 

Since the ANN uses time-domain signals to learn the 
component’s behaviour, probability density function 
histograms for I and Q signal component amplitudes provide 
valuable insight in the accuracy of modelling, mostly in 
determining whether an ANN is favouring or discriminating 
certain ranges of magnitudes/amplitudes. In other words, in 
addition to the NMSE measure and PSD, AM-AM and AM-
PM characteristics, these histograms can serve as indicators on 
how well different signal amplitudes were modeled. Hence, 
these are also included in section IV of this paper.  

IV. RESULTS 

Experimental results acquired with test equipment 
described in II, were used for modelling PA behaviour for         
3 MHz and 1.4 MHz LTE signals at centre frequencies of     
880 MHz and 2140 MHz, respectively.  

For PA modelling with LTE 3 MHz signal at 880 MHz 
centre frequency and at 2 dB back-off from P1dB, NMSE 
value reached -38.91 dB. PSD graphs and AM-AM/PM 
characteristics show results in the spectral-domain (Figs.2-3), 
whereas the time-domain signal characteristics and the 
preservation thereof is shown in Figs.4-5. 

The proposed direct model’s performance was also tested 
using a 3 MHz LTE signal driven further into compression 
region, at P1dB exactly. NMSE deteriorated slightly (reaching 
-37.46 dB), achieving noticeable results in both time and 
spectral domain (Figs. 6-9) further demonstrating the model’s 
adaptability. 
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Figure 2.  PSD characteristic of measured and predicted 3 MHz LTE signal at 

2 dB back-off from P1dB at 880 MHz centre frequency 

 
Figure 3.  AM-AM/PM characteristics of measured and predicted 3 MHz 

LTE signal at 2 dB back-off from P1dB at 880 MHz centre frequency 

 
Figure 4.  Amplitude histogram for measured and predicted 3 MHz LTE 

signal at 2 dB back-off from P1dB at 880 MHz centre frequency – I 
component 

       

Figure 5.  Amplitude histogram for measured and predicted 3 MHz LTE 
signal at 2 dB back-off from P1dB at 880 MHz centre frequency – Q 

component 

       
Figure 6.  PSD characteristic of measured and predicted 3 MHz LTE signal at 

P1dB at 880 MHz centre frequency 

       
Figure 7.  AM-AM/PM characteristics of measured and predicted 3 MHz 

LTE signal at P1dB at 880 MHz centre frequency 
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Figure 8.  Amplitude histogram for measured and predicted 3 MHz LTE 
signal at P1dB at 880 MHz centre frequency – I component 

 
Figure 9.  Amplitude histogram for measured and predicted 3 MHz LTE 

signal at P1dB at 880 MHz centre frequency – Q component 

To further evaluate the adaptability of the model, we also 
tested it using LTE 1.4 MHz signal at centre frequency of   
2140 MHz, achieving NMSE value of -33.79 dB. PSD graph as 
well as AM-AM/PM characteristics are shown in Figs.10-11. 
Amplitude histograms are portrayed in Figs.12-13. 

Lastly, the DPD model was attained by mirroring the 
proposed direct (PA) structure. Linearization tests were 
conducted by concatenating the DPD with the PA structure. 
The DPD model was developed for LTE 3MHz signal at 2 dB 
back-off from P1dB at 880 MHz centre frequency. Achieved 
NMSE of linearization (calculated between the original input 
and the linearized signal) was -37.8 dB. The PSD graph of the 
DPD+PA cascade and AM-AM and AM-PM characteristics 
are shown in Figs.14-15. 

 

 

Figure 10.  PSD characteristic of measured and predicted 1.4 MHz LTE signal 
at 2 dB back-off from P1dB at 2140 MHz centre frequency 

      
Figure 11.  AM-AM/PM characteristics of measured and predicted 1.4 MHz 

LTE signal at 2 dB back-off from P1dB at 2140 MHz centre frequency 

       
Figure 12.  Amplitude histogram for measured and predicted 1.4 MHz LTE 

signal at 2 dB back-off from P1dB at 2140 MHz centre frequency – I 
component 
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Figure 13.  Amplitude histogram for measured and predicted 1.4 MHz LTE 
signal at 2 dB back-off from P1dB at 2140 MHz centre frequency – Q 

component 

 
Figure 14.  Linearization capability of DPD+DUT cascade in simulation for 3 

MHz LTE signal at 2 dB back-off from P1dB at 880 MHz centre 
frequency- PSD characteristic 

 
Figure 15.  Linearization capability of DPD+DUT cascade in simulation for 3 

MHz LTE signal at 2 dB back-off from P1dB at 880 MHz centre 
frequency - AM-AM/PM characteristics 

 

V. CONCLUSION 

In this paper we tested an ANN NARX model from our 
previous paper [6] further for PA distortion in LTE 
transmitters. Obtained results confirm the accuracy of the 
model for signals with different bandwidth, input power and 
centre frequency, verifying its adaptability. Through 
simulations, we also achieved linearization of the transmitted 
signal by predistortion. The results show that the solution 
proposed can also be efficiently used for applications where the 
branch imbalances introduced by the I/Q modulator are 
insignificant, thus making the solution generally applicable.  
As an additional evaluation of the model’s capabilities, we 
presented signal statistics probability density function 
histograms for time-domain signals that show a high level of 
matching, which is concurrent with other accuracy measures 
used such as NMSE and PSD and gain/phase characteristics 
graphs.  
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