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Abstract — This paper presents a gravitational search algorithm 
(GSA) for solving the combined economic and emission dispatch 
(CEED) problem in power systems. Numerical results for the 
standard IEEE 30-bus six-generator test system have been 
presented to illustrate the performance and applicability of the 
proposed approach. The results obtained are compared to those 
reported in the recent literature. Those results show that the 
proposed algorithm provides effective and robust high-quality 
solution of the CEED problem. 
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I.  INTRODUCTION 
Economic dispatch (ED) problem has a significant 

importance in the power system’s operation, economic 
scheduling and security. The ED problem solution aims to 
minimize the cost of generation of electric power though 
optimal adjustment of the committed generating unit outputs, 
while at the same time satisfying all unit and system 
constraints. It is a large-scale non-linear constrained 
optimization problem. With the increased public awareness of 
the environmental pollution, the traditional ED, which ignores 
the pollutant emissions of the fossil fuels used by the thermal 
plants, no longer satisfies the needs [1]. When the 
environmental concerns are combined with the ED then the 
problem becomes CEED problem. This problem considers two 
objectives such as minimization of the fuel cost and emission 
from the thermal power plants with both equality and 
inequality constraints. So, the CEED problem is a multi-
objective mathematical problem in which conflicting 
objectives are optimized simultaneously. 

Environmental aspect adds complexity to the solution of the 
economic dispatch problem due to the nonlinear 
characteristics of the mathematical models used to represent 
emissions. In addition, the CEED problem can be complicated 
even further if non-smooth and non-convex fuel cost functions 
are used to model generators, such as valve point loading 
effects. All these considerations make the CEED problem a 
highly nonlinear and a multimodal optimization problem [2]. 

Generally, three approaches to handle the CEED problem 
have been reported in [3]. In the first approach, the emission is 
treats as a constraint with a permissible limit. However, this 

formulation has a severe difficulty in getting the trade-off 
relations between cost and emission. The second approach 
treats the emission as another objective in addition to the cost 
objective. In this case, the CEED problem is converted into a 
single objective optimization problem either by linear 
combination of both objectives or by considering one 
objective at a time for optimization. In the third approach, 
simultaneously conflicting objectives are evaluated together in 
the solution of the CEED problem. Both the fuel cost and the 
emission are minimized together. 

In practice, the economic dispatch problem has been 
solved by using deterministic (classical) and population-based 
optimization methods. In the past few decades, many classical 
optimization methods such as gradient method, Newton’s 
method, linear programming, non-linear programming, 
dynamic programming, goal programming technique and 
Lagrangian relaxation algorithm, have been applied to various 
ED problems. However, most of them have difficulties to 
solve ED problems due to non-linearity and non-convexity 
fuel cost and emission characteristics. The conventional 
optimization methods are highly sensitive to the starting point 
and frequently converge to local optimum solution. Moreover, 
these methods are not able to find a solution with a significant 
computational time for medium or large-scale CEED problem 
[2]. 

Recently, many population-based methods have been used 
to solve complex constrained optimization problems. 
Generally, achieving optimal or near optimal solution for a 
specific problem will require multiple trials as well as 
appropriate tuning of associated parameters [4]. A wide 
variety of population-based techniques such as artificial bee 
colony algorithm (ABC) [1], spiral optimization algorithm 
(SOA) [2], genetic algorithm (GA), non-dominated sorting 
genetic algorithm (NSGA), niched Pareto genetic algorithm 
(NPGA) [5], non-dominated sorting genetic algorithm (NSGA 
II) [6,7], differential evolution (DE) [8,9], multi objective 
differential evolution (MODE) [10], particle swarm 
optimization (PSO) [11], multi-objective particle swarm 
optimization (MOPSO) [3], modified bacterial foraging 
algorithm (MBFA) [12], etc., have been applied in solving the 
non-linear CEED  problems with different objective functions. 

This paper proposes a GSA algorithm to solve the CEED 
problem. The performance of the proposed algorithm is tested 
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on the standard IEEE 30-bus six-generator test system. 
Numerical results obtained by the proposed approach were 
compared with other optimization results reported in the 
literature recently. 

II. PROBLEM FORMULATION 
The solution of the combined economic and emission 

dispatch problem is achieved by minimizing the objective 
function (OF) combined with the weighted sum method under 
the system constraints [1]. 
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In Eq. (1), the fuel cost rate ($/h) is shown with ( )nGn PF ,  and 
emission rate (ton/h) with ( )nGn PE , . Scaling factor, weight 
factor and the set of all the thermal generation units are 
denoted as ,γ w  ( )10 ≤≤ w  and NG respectively. 1=w  
corresponds to the minimization of total fuel cost only, 
likewise, 0=w  corresponds to the minimization of total 
emission only. 

A. Fuel cost function 
Fuel cost function of each generator in the system may be 

represented as a quadratic function of real power generation: 

                      ( ) 2
,,, nGnnGnnnGn PcPbaPF ++=   ($/h)               (2) 

where an, bn and cn are the cost coefficients. 

B. Emission function 
Fossil-fueled thermal units cause atmospheric waste 

emission composed of gases and particles such as carbon 
dioxide (CO2), sulfur dioxide (SO2), nitrogen oxide (NOx). 
Different mathematical models were proposed to represent the 
emission function of thermal generating units [16]. In this 
paper, the emission function of each thermal unit is defined as 
the sum of a quadratic function and an exponential function 
[1]: 

     ( ) ( )nGnnnGnnGnnnGn PPPPE ,
2
,,, exp λξηβα +++=   (ton/h)  (3) 

where nα , nβ , nη , nξ  and nλ  are coefficients of the nth 
generator emission characteristics. In the Eqs. (2)-(3), the nGP ,  
is in MW. 

C. Constraints 
During the minimization process, some equality and 

inequality constraints must be satisfied. In this process, an 
equality constraint is called a power balance and an inequality 
constraint is called a generation capacity constraint. 

 
 

C1.  Power balance constraint  
The total power generation must cover the total load 

demand Pload and the real power loss in transmission lines 
Ploss. Accordingly, the power balance constraint can be 
represented as follows: 
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The transmission losses of the system are represented by 
loss coefficients (Bnj), normally referred to as B-loss matrices. 
The B-loss matrices approximate the system losses as a 
quadratic function of the generator real powers: 
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where Bnj, B0n and B00 are the coefficients of the B-loss 
matrices. 

C2. Generation capacity constraint 
For stable operation, real power output of each generator is 

restricted by minimum min
,nGP and maximum max

,nGP power limits 
as follows: 
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C3. Slack generator calculation 
     To enforce active power balance constraint given in Eq. 
(4), a dependent generator (slack generator) should be 
selected. As the slack generator, the generator which indexed 
with NG is adopted. The value of generation power, old

NG G
P , , is 

calculated by using Eq. (7) where the initial value of power 
loss is set to zero ( )0== first

loss
old

loss PP  [1]. 
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After obtaining old
NG G

P , , new power loss, new
lossP , is determined 

from Eq. (5). According to this, new
NG G

P , is calculated using the 
following equation: 

                           
∑
−

=
−+=

1

1
,,

G

G

N

n
nG

new
lossload

new
NG PPPP                      (8) 

The result of this equation is controlled in Eq. (9) and if the 
error value (ε) is below error tolerance value, TOLε (e.g. 
TOLε=10-6), the equation satisfies the power balance 
constraint. 
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The obtained 
GNGP , is checked whether it satisfies the 

constraint defined in Eq. (6) or not. Consequently, the variable 
lim
, GNGP  is defined as: 
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Inequality constraint of the dependent variable, that is 
,, GNGP is added to the objective function as a quadratic penalty 

terms. The new expanded objective function to be minimized 
becomes: 

                          
( )2lim

,,OFOF
GG NGNGpp PP −+= λ                   (11) 

where λp is the penalty factor. 

III. OVERVIEW OF GSA  
The gravitational search algorithm (GSA) is a newly 

stochastic search algorithm developed by Rashedi et al. [13]. 
In this algorithm, agents are considered as objects and their 
performances are measured by their masses. The GSA could 
be considered as an isolated system of masses. It is like a 
small artificial world of masses obeying the Newtonian laws 
of gravitation and motion. By lapse of time, the masses will be 
attracted by the heaviest mass which it represents an optimum 
solution in the search space. GSA has been verified as having 
high-quality performance in solving different optimization 
problems [17-20]. 

 In a system with N agents (masses), the position of the ith 
agent is defined by: 

              [ ]n
i

k
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where n is the search spase dimension of the problem, i.e. the 
number of control variables, and k

ix  defines the position of 
the ith agent in the kth dimension.  

After evaluating the current population fitness, the mass of 
each agent is calculated as follows: 
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where fiti(t) represent the fitness value of the agent i at time 
(iteration) t. best(t) and worst(t) is the best and worst fitness of 
all agents, respectively and defined as follows (for a 
minimization problem): 
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 According to Newton gravitation theory, the total force 
that acts on the ith agent in the kth dimension at t time is 
specified as follows: 
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where rj is a random number in the interval [0, 1], G(t) is 
gravitational constant at time t, Mi(t) and Mj(t) are masses of 
agents i and j, ɛ is a small constant and Rij(t) is the Euclidian 
distance between the two agents i and j given by the following 
equation: 
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Kbest is the set of first K agents with the best fitness value and 
biggest mass, which is a function of time, initialized to K0 at 
the beginning and decreased with time. In such a way, at the 
beginning, all agents apply the force, and as time passes, Kbest 
is decreased linearly and at the end there will be just one agent 
applying force to the others. By the law of motion, the 
acceleration of the ith agent, at t time in the kth dimension is 
given by following equation: 
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     The searching strategy on this notion can be defined to find 
the next velocity and next position of an agent. Next velocity 
of an agent is defined as a function of its current velocity 
added to its current acceleration. Hence, the next position and 
next velocity of an agent can be computed as follows: 
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where ri is a uniform random variable in the interval [0, 1]. 
This random number is utilized to give a randomized 
characteristic to the search. k

ix  represents the position of 

agent i in dimension k, k
iv is the velocity and k

ia is the 
acceleration.  
     It must be pointed out that the gravitational constant G(t) is 
important in determining the performance of GSA. It is 
initialized at the beginning and will be reduced with time to 
control the search accuracy. In other words, the gravitational 
constant is a function of the initial value G0 and time t: 

                                  
( ) ( )TtGtG α−= exp0

             
         (22) 
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where α is a user specified constant, t the current iteration and 
T is the maximum iteration number. The parameters of 
maximum iteration T, population size N, initial gravitational 
constant G0 and constant α control the performance of GSA. 

A. GSA implementation 
Proposed GSA approach has been applied to solve the 

CEED problem. The control variables of the CEED problem 
constitute the individual position of several agents that 
represent a complete solution set. In a system with N agents, 
the position of the ith agent is defined by: 

[ ]n
i

k
iii xxxX ,...,,...,1=    for  Ni ,...,2,1=  and 1−= GNn      (23) 

The elements of agent Xi are real power outputs of all 
generation units, except the slack generator. Different steps to 
solve the CEED problem using GSA are listed as follow: 
Step 1 Search space identification. Initialize GSA parameters 
like:  N, T, G0, and α. 
Step 2 Initialization: generate random population of N agents. 
The initial positions of each agent are randomly selected 
between minimum and maximum values of the control 
variables (i.e. real power outputs of the generation units). 
Step 3 Calculate the real power output of slack generator for 
each agent in current population. 
Step 4 Calculate the fitness value for each agent using (1). 
Step 5 Update the G(t) (22), best(t) (15), worst(t) (16) and 
Mi(t) (13) for i=1,2,...,N. 
Step 6 Calculation of the total force in different directions 
using (17).  
Step 7 Calculation of acceleration of each agent using (19). 
Step 8 Calculation of velocity of all agents using (20). 
Step 9 Update each agent’s position using (21). 
Step 10 Repeat Steps 3-9 until the stop criteria is reached. 
That is a predefined number of iteration, T.  
Step 11 Return best solution. Stop. 

IV. SIMULATION RESULTS 
The proposed GSA algorithm is tested on the standard 

IEEE 30-bus six-generator test system for Pload = 283.4 MW. 
This test system is widely used as benchmark in the power 
system field for solving the CEED problem [2]. The fuel cost 
coefficients and the NOx emission coefficients, including the 
limits of generation for the generators of the test system are 
listed in Table I. In this study, the scaling factor in (1) is taken 
as 1000=

xNOγ  ($/ton) and the error tolerance value in (9) is 

610−=εTOL  MW. The B-loss matrix values are shown as 
follows: 
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The algorithm have been implemented in MATLAB 2011b 
computing environment and run on a 2.20 GHz, PC with 3.0 
GB RAM. Twenty consecutive test runs have been performed 
for each case examined. The results shown are the best values 
obtained over these 20 runs. The GSA parameters used for the 
simulation are adopted as follow: α is set to 10 and G0 is set to 
1. The population size N and maximum iteration number T are 
set to 50 and 200, respectively, for all case studies.  

For the purpose of comparison with the reported results, 
the test system is considered for two cases as follows:  
Case A: With considering Ploss ; Case B: With neglecting Ploss. 
Table II shows the optimum solution values of GSA for the 
weight factor: w = 1 (fuel cost minimization), w = 0 (NOx 
emission minimization), and w = 0.5 (combined fuel cost and 
NOx emission minimization – CEED minimization).  

Under the same system data, control variable limits and 
constraints, the results for Cases A and B obtained using the 
GSA approach are compared to some other algorithms 
reported in the literature as shown in Tables III and IV, 
respectively. From these tables, it can be seen that the 
proposed approach outperforms many techniques used to solve 
CEED problems because the results obtained using GSA are 
either better or comparable to those obtained using other 
techniques. This highlights its ability to find better quality 
solution. 

Figs. 1-3 illustrates the convergence characteristics of GSA 
for the fuel cost, NOx emission and combined fuel cost and 
NOx emission minimization, respectively. As can been seen, 
the proposed GSA algorithm is converge to its global optimal 
solution in very small number of iteration for all cases.   

TABLE I.           GENERATION LIMITS, FUEL COST AND EMISSION COEFFICIENTS OF THE TEST SYSTEM. 

Unit min
,nGP  max

,nGP  na  nb  nc  nα  nβ  nη  nξ  nλ  

1 5 150 10 200 100 4.091e-2 -5.554e-2 6.940e-2 2.0e-4 2.857 
2 5 150 10 150 120 2.543e-2 -6.047e-2 5.638e-2 5.0e-4 3.333 
3 5 150 20 180 40 4.258e-2 -5.094e-2 4.586e-2 1.0e-6 8.0 
4 5 150 10 100 60 5.326e-2 -3.550e-2 3.380e-2 2.0e-3 2.0 
5 5 150 20 180 40 4.258e-2 -5.094e-2 4.586e-2 1.0e-6 8.0 
6 5 150 10 150 100 6.131e-2 -5.555e-2 5.151e-2 1.0e-5 6.667 
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TABLE II.          THE BEST SOLUTION FOR FUEL COST AND NOX EMISSION. 

 w Generation (MW) Fuel cost  
($/h) 

NOx emission 
 (ton/h) 

Ploss  
(MW) PG,1 PG,2 PG,3 PG,4 PG,5 PG,6 

 
Case A 

1 12.09691 28.63121 58.35574 99.28540 52.39700 35.18993 605.99837 0.220729 2.55619 
0 41.09251 46.36678 54.44194 39.03737 54.44590 51.54849 646.20699 0.194179 3.53300 
0.5 22.55425 35.45564 57.00526 74.53983 54.82119 41.55654 612.25279 0.203570 2.53270 

 
Case B 

1 10.97194 29.97662 52.42982 101.61988 52.42982 35.97193 600.11141 0.222145 - 
0 40.60738 45.90691 53.79387 38.29530 53.79384 51.00270 638.27344 0.194203 - 
0.5 23.22984 36.03388 53.88180 74.57677 53.88179 41.79592 606.79829 0.203289 - 

TABLE III.          COMPARISON OF BEST SOLUTION FOR CASE A. 

Methods Fuel cost minimization (w=1) NOx emission minimization (w=0) CEED minimization (w=0.5) 
Fuel cost  
($/h) 

NOx emission 
 (ton/h) 

Fuel cost  
($/h) 

NOx emission 
 (ton/h) 

Fuel cost  
($/h) 

NOx emission 
 (ton/h) 

ABC [1] 605.4258 0.2210 646.0455 0.1942 612.195 0.2035 
MOPSO [3] 607.7900 0.2193 644.7400 0.1942 615.000 0.2021 
GA [5] 607.7800 0.2199 645.2200 0.1942 - - 
NSGA [5] 607.9800 0.2191 638.9800 0.1947 617.8000 0.2002 
NPGA [5] 608.0600 0.2207 644.2300 0.1943 617.7900 0.2004 
NSGA II [6] 607.8010 0.2189 644.1330 0.1942 - - 
NSGA II [7] 613.6759 0.2223 648.7090 0.1942 - - 
DE [8] 608.0658 0.2193 645.0850 0.1942 - - 
DE [9] 606.0000 0.2217 645.5900 0.1942 - - 
MODE [10] 606.4160 0.2221 643.5190 0.1942 614.170 0.2043 
PSO [11] 607.8400 0.2192 642.9000 0.1942 - - 
MBFA [12] 607.6700 0.2198 644.4300 0.1942 616.496 0.2002 
MODE/PSO [14] 606.0073 0.2209 646.0243 0.1942 - - 
MA θ-PSO [15] 605.9984 0.2206 649.2070 0.1942 - - 
GSA 605.99837 0.220729 646.20699 0.194179 612.25279 0.203570 

TABLE IV.          COMPARISON OF BEST SOLUTION FOR CASE B. 

Methods Fuel cost minimization (w=1) NOx emission minimization (w=0) CEED minimization (w=0.5) 
Fuel cost 
($/h) 

NOx emission 
(ton/h) 

Fuel cost 
($/h) 

NOx emission 
(ton/h) 

Fuel cost 
($/h) 

NOx emission 
(ton/h) 

SOA [2] 600.986 0.20889 640.749 0.18729 624.604 0.18708 
MOPSO [3] 600.12 0.2216 637.42 0.1942 608.65 0.2017 
GA [5] 600.11 0.2221 638.26 0.1942 - - 
NSGA [5] 600.34 0.2241 633.83 0.1946 606.03 0.2041 
NPGA [5] 600.31 0.2238 636.04 0.1943 608.90 0.2015 
NSGA II [6] 600.155 0.22188 638.269 0.19420 - - 
NSGA II [7] 600.7422 0.2204 636.7316 0.1942 - - 
DE [8] 600.1114 0.2221 638.2907 0.1942 - - 
DE [9] 600.11 0.2231 638.860 0.1952 - - 
PSO [11] 600.13 0.2199 636.62 0.1943 - - 
MBFA [12] 600.17 0.2200 636.73 0.1942 610.906 0.2000 
MODE/PSO [14] 600.115 0.22201 638.270 0.194203 - - 
MA θ-PSO [15] 600.1114 0.2221 638.2734 0.1942 - - 
GSA 600.11141 0.222145 638.27344 0.194203 606.79829 0.203289 
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Fig. 1. Convergence characteristics of GSA in case fuel cost min. (w=1). 
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Fig. 2. Convergence characteristics of GSA in case NOx emission min. (w=0). 
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Fig. 3. Convergence characteristics of GSA in in case combine fuel cost and 

NOx emission minimization - CEED (w=0.5). 

V. CONCLUSION 
In this paper, a GSA optimization algorithm has been 

proposed and successfully applied to solve the CEED 
problem. Simulation results show that the GSA approach 
provides effective and robust high-quality solution. Moreover, 
the results obtained using GSA are either better or comparable 
to those obtained using other techniques reported in the 
literature.  
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