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Abstract — This paper presents a gravitational search algorithm
(GSA) for solving the combined economic and emission dispatch
(CEED) problem in power systems. Numerical results for the
standard IEEE 30-bus six-generator test system have been
presented to illustrate the performance and applicability of the
proposed approach. The results obtained are compared to those
reported in the recent literature. Those results show that the
proposed algorithm provides effective and robust high-quality
solution of the CEED problem.
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1. INTRODUCTION

Economic dispatch (ED) problem has a significant
importance in the power system’s operation, economic
scheduling and security. The ED problem solution aims to
minimize the cost of generation of electric power though
optimal adjustment of the committed generating unit outputs,
while at the same time satisfying all unit and system
constraints. It is a large-scale non-linear constrained
optimization problem. With the increased public awareness of
the environmental pollution, the traditional ED, which ignores
the pollutant emissions of the fossil fuels used by the thermal
plants, no longer satisfies the needs [1]. When the
environmental concerns are combined with the ED then the
problem becomes CEED problem. This problem considers two
objectives such as minimization of the fuel cost and emission
from the thermal power plants with both equality and
inequality constraints. So, the CEED problem is a multi-
objective mathematical problem in which conflicting
objectives are optimized simultaneously.

Environmental aspect adds complexity to the solution of the
economic dispatch problem due to the nonlinear
characteristics of the mathematical models used to represent
emissions. In addition, the CEED problem can be complicated
even further if non-smooth and non-convex fuel cost functions
are used to model generators, such as valve point loading
effects. All these considerations make the CEED problem a
highly nonlinear and a multimodal optimization problem [2].

Generally, three approaches to handle the CEED problem
have been reported in [3]. In the first approach, the emission is
treats as a constraint with a permissible limit. However, this

formulation has a severe difficulty in getting the trade-off
relations between cost and emission. The second approach
treats the emission as another objective in addition to the cost
objective. In this case, the CEED problem is converted into a
single objective optimization problem either by linear
combination of both objectives or by considering one
objective at a time for optimization. In the third approach,
simultaneously conflicting objectives are evaluated together in
the solution of the CEED problem. Both the fuel cost and the
emission are minimized together.

In practice, the economic dispatch problem has been
solved by using deterministic (classical) and population-based
optimization methods. In the past few decades, many classical
optimization methods such as gradient method, Newton’s
method, linear programming, non-linear programming,
dynamic programming, goal programming technique and
Lagrangian relaxation algorithm, have been applied to various
ED problems. However, most of them have difficulties to
solve ED problems due to non-linearity and non-convexity
fuel cost and emission characteristics. The conventional
optimization methods are highly sensitive to the starting point
and frequently converge to local optimum solution. Moreover,
these methods are not able to find a solution with a significant
computational time for medium or large-scale CEED problem
[2].

Recently, many population-based methods have been used
to solve complex constrained optimization problems.
Generally, achieving optimal or near optimal solution for a
specific problem will require multiple trials as well as
appropriate tuning of associated parameters [4]. A wide
variety of population-based techniques such as artificial bee
colony algorithm (ABC) [1], spiral optimization algorithm
(SOA) [2], genetic algorithm (GA), non-dominated sorting
genetic algorithm (NSGA), niched Pareto genetic algorithm
(NPGA) [5], non-dominated sorting genetic algorithm (NSGA
1) [6,7], differential evolution (DE) [8,9], multi objective
differential evolution (MODE) [10], particle swarm
optimization (PSO) [11], multi-objective particle swarm
optimization (MOPSO) [3], modified bacterial foraging
algorithm (MBFA) [12], etc., have been applied in solving the
non-linear CEED problems with different objective functions.

This paper proposes a GSA algorithm to solve the CEED
problem. The performance of the proposed algorithm is tested
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on the standard IEEE 30-bus six-generator test system.
Numerical results obtained by the proposed approach were
compared with other optimization results reported in the
literature recently.

II.  PROBLEM FORMULATION

The solution of the combined economic and emission
dispatch problem is achieved by minimizing the objective
function (OF) combined with the weighted sum method under
the system constraints [1].

oF=Min{wan<PG,n>+a-w>yza(z»w)} 0

neNg neNg

In Eq. (1), the fuel cost rate ($/h) is shown with F, (PGW) and
emission rate (ton/h) with E, (PG’W). Scaling factor, weight
factor and the set of all the thermal generation units are
denoted as y, w (OSWSl) and Ng respectively. w=1

corresponds to the minimization of total fuel cost only,
likewise, w=0 corresponds to the minimization of total
emission only.

A. Fuel cost function

Fuel cost function of each generator in the system may be
represented as a quadratic function of real power generation:

Fn (PG,n): an +anG,n +cnPGz,n ($/h) (2)

where a,, b, and ¢, are the cost coefficients.

B.  Emission function

Fossil-fueled thermal units cause atmospheric waste
emission composed of gases and particles such as carbon
dioxide (CO,), sulfur dioxide (SO,), nitrogen oxide (NOy).
Different mathematical models were proposed to represent the
emission function of thermal generating units [16]. In this
paper, the emission function of each thermal unit is defined as
the sum of a quadratic function and an exponential function

[1]:
E,(P,,)=a, +B,P;, +1,P2, +& explA,P;,) (ton/h) (3)

where «,, f,, n,, & and A4 are coefficients of the nth
generator emission characteristics. In the Egs. (2)-(3), the P,
is in MW.

C. Constraints

During the minimization process, some equality and
inequality constraints must be satisfied. In this process, an
equality constraint is called a power balance and an inequality
constraint is called a generation capacity constraint.

Cl. Power balance constraint

The total power generation must cover the total load
demand Py, and the real power loss in transmission lines
P Accordingly, the power balance constraint can be
represented as follows:

ZPG,n - Pload - Pluss = O (4)

neNg

The transmission losses of the system are represented by
loss coefficients (B,), normally referred to as B-loss matrices.
The B-loss matrices approximate the system losses as a
quadratic function of the generator real powers:

P = Z ZPG,anjPG,j + ZBOnPG,n +By, (5)

neNg jeNg neNg

where B,;, By, and By are the coefficients of the B-loss
matrices.
C2. Generation capacity constraint

For stable operation, real power output of each generator is
restricted by minimum P}’ and maximum P;%* power limits
as follows:

PIM<P, <P™  (neN,) (6)

C3. Slack generator calculation

To enforce active power balance constraint given in Eq.
(4), a dependent generator (slack generator) should be
selected. As the slack generator, the generator which indexed

with Ng is adopted. The value of generation power, PG”,/]‘f,G , 18

calculated by using Eq. (7) where the initial value of power
loss is set to zero (P”"’ =pSst = 0) [1].

loss loss
Ng-1
P =p —- 3P 7)
G,N; — " load G.n
n=1

. ld o . .
After obtaining P(‘;’,Nu , new power loss, P", is determined

loss
from Eq. (5). According to this, ;7 is calculated using the

following equation:

Ng-1
PGn,eICb = load _,r_P”@W - ZPG,H (8)

loss
n=1

The result of this equation is controlled in Eq. (9) and if the
error value (¢) is below error tolerance value, TOL, (e.g.
TOL=10°), the equation satisfies the power balance
constraint.

new old
Pt =P,

loss loss

E =

£<TOL, )
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The obtained F;, is checked whether it satisfies the
constraint defined in Eq. (6) or not. Consequently, the variable

lim .
Fg.v, 1s defined as:

max . max
P if Pon, > PO
lim  _ min s min
P =aPyif Py, <P (10)
: min max
Py, if Piw <P, <PIV

Inequality constraint of the dependent variable, that is
P . »1s added to the objective function as a quadratic penalty

terms. The new expanded objective function to be minimized
becomes:

im 2
OF, =OF+ 4, (P, — P ) )

where 4, is the penalty factor.

III.  OVERVIEW OF GSA

The gravitational search algorithm (GSA) is a newly
stochastic search algorithm developed by Rashedi et al. [13].
In this algorithm, agents are considered as objects and their
performances are measured by their masses. The GSA could
be considered as an isolated system of masses. It is like a
small artificial world of masses obeying the Newtonian laws
of gravitation and motion. By lapse of time, the masses will be
attracted by the heaviest mass which it represents an optimum
solution in the search space. GSA has been verified as having
high-quality performance in solving different optimization
problems [17-20].

In a system with N agents (masses), the position of the ith
agent is defined by:

X, =[xt x| for i=12,.,N (12)
where 7 is the search spase dimension of the problem, i.e. the
number of control variables, and x,.k defines the position of
the ith agent in the kth dimension.

After evaluating the current population fitness, the mass of
each agent is calculated as follows:

Mﬁ#mﬁyzmﬁ) (13)

m (1) = fit, (t)- worst(t) (14)

best(t)— worst(t)
where fit,(f) represent the fitness value of the agent i at time
(iteration) t. best(f) and worst(f) is the best and worst fitness of
all agents, respectively and defined as follows (for a
minimization problem):

best(t) = min fit,(¢) (15)

Jellos

fit (t) (16)

worst(t) = jerfll,%v}

According to Newton gravitation theory, the total force
that acts on the ith agent in the kth dimension at ¢ time is
specified as follows:

FO= 5 60 P00 0) 1

J J i
JjeKbest, j#i Ri,j (t)+ &

where 7; is a random number in the interval [0, 1], G(t) is
gravitational constant at time ¢, M,(f) and M(¢) are masses of
agents i and j, e is a small constant and R,(¢) is the Euclidian
distance between the two agents i and j given by the following
equation:

R, (6)=x, () x, (o)), (18)

Kbest is the set of first K agents with the best fitness value and
biggest mass, which is a function of time, initialized to K, at
the beginning and decreased with time. In such a way, at the
beginning, all agents apply the force, and as time passes, Kbest
is decreased linearly and at the end there will be just one agent
applying force to the others. By the law of motion, the
acceleration of the ith agent, at ¢ time in the kth dimension is
given by following equation:

af ()= F(t)/m,(1) (19)

The searching strategy on this notion can be defined to find
the next velocity and next position of an agent. Next velocity
of an agent is defined as a function of its current velocity
added to its current acceleration. Hence, the next position and
next velocity of an agent can be computed as follows:

vi(E+1)=rvi(e)+al () (20)

xE(+1)=xF(e)+vE(e+1) 21)

where 7; is a uniform random variable in the interval [0, 1].
This random number is utilized to give a randomized

characteristic to the search. xl." represents the position of
agent i in dimension £, v,.k is the velocity and al." is the

acceleration.

It must be pointed out that the gravitational constant G(?) is
important in determining the performance of GSA. It is
initialized at the beginning and will be reduced with time to
control the search accuracy. In other words, the gravitational
constant is a function of the initial value G, and time ¢

G(t)= G, exp(-at/T) (22)
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where a is a user specified constant, ¢ the current iteration and
T is the maximum iteration number. The parameters of
maximum iteration 7, population size N, initial gravitational
constant Gy and constant a control the performance of GSA.

A.  GSA implementation

Proposed GSA approach has been applied to solve the
CEED problem. The control variables of the CEED problem
constitute the individual position of several agents that
represent a complete solution set. In a system with N agents,
the position of the ith agent is defined by:

X, =[xt xr] for i=12,.,N and n=N, -1 (23)

The elements of agent X; are real power outputs of all
generation units, except the slack generator. Different steps to
solve the CEED problem using GSA are listed as follow:

Step 1 Search space identification. Initialize GSA parameters
like: N, T, Gy, and o.

Step 2 Initialization: generate random population of N agents.
The initial positions of each agent are randomly selected
between minimum and maximum values of the control
variables (i.e. real power outputs of the generation units).

Step 3 Calculate the real power output of slack generator for
each agent in current population.

Step 4 Calculate the fitness value for each agent using (1).
Step 5 Update the G(¢) (22), best(t) (15), worst(f) (16) and
M) (13) for i=1,2,...,N.

Step 6 Calculation of the total force in different directions
using (17).

Step 7 Calculation of acceleration of each agent using (19).
Step 8 Calculation of velocity of all agents using (20).

Step 9 Update each agent’s position using (21).

Step 10 Repeat Steps 3-9 until the stop criteria is reached.
That is a predefined number of iteration, 7.

Step 11 Return best solution. Stop.

IV. SIMULATION RESULTS

The proposed GSA algorithm is tested on the standard
IEEE 30-bus six-generator test system for P,,; = 283.4 MW.
This test system is widely used as benchmark in the power
system field for solving the CEED problem [2]. The fuel cost
coefficients and the NO, emission coefficients, including the
limits of generation for the generators of the test system are
listed in Table I. In this study, the scaling factor in (1) is taken

as 7y, =1000 ($/ton) and the error tolerance value in (9) is

TOL, =10° MW. The B-loss matrix values are shown as
follows:

0.1382  -0.0299 0.0044 -0.0022 -0.0010 -0.0008
-0.0299 0.0487 -0.0025 0.0004 0.0016  0.0041

| 0.0044  -0.0025 0.0182 -0.0070 —0.0066 —0.0066
-0.0022 0.0004 -0.0070 0.0137  0.0050  0.0033
—-0.0010 0.0016 —0.0066 0.0050 0.0109  0.0005
—0.0008 0.0041 -0.0066 0.0033  0.0005 0.0244

BO:[70.0107 0.0060 -0.0017 0.0009 0.0002 0.0030]

B, =[0.00098573]

The algorithm have been implemented in MATLAB 2011b
computing environment and run on a 2.20 GHz, PC with 3.0
GB RAM. Twenty consecutive test runs have been performed
for each case examined. The results shown are the best values
obtained over these 20 runs. The GSA parameters used for the
simulation are adopted as follow: « is set to 10 and Gy is set to
1. The population size N and maximum iteration number 7T are
set to 50 and 200, respectively, for all case studies.

For the purpose of comparison with the reported results,

the test system is considered for two cases as follows:
Case A: With considering P, ; Case B: With neglecting P,;.
Table II shows the optimum solution values of GSA for the
weight factor: w = 1 (fuel cost minimization), w = 0 (NOy
emission minimization), and w = 0.5 (combined fuel cost and
NO, emission minimization — CEED minimization).

Under the same system data, control variable limits and
constraints, the results for Cases A and B obtained using the
GSA approach are compared to some other algorithms
reported in the literature as shown in Tables III and IV,
respectively. From these tables, it can be seen that the
proposed approach outperforms many techniques used to solve
CEED problems because the results obtained using GSA are
either better or comparable to those obtained using other
techniques. This highlights its ability to find better quality
solution.

Figs. 1-3 illustrates the convergence characteristics of GSA
for the fuel cost, NO, emission and combined fuel cost and
NO, emission minimization, respectively. As can been seen,
the proposed GSA algorithm is converge to its global optimal
solution in very small number of iteration for all cases.

TABLE L GENERATION LIMITS, FUEL COST AND EMISSION COEFFICIENTS OF THE TEST SYSTEM.
Unit PG“?:.In PC‘;]?;;X a/’l bl‘l CVI a /Bﬂ 7771 gﬂ lﬂ
1 5 150 10 | 200 | 100 | 4.091e-2 | -5.554e-2 | 6.940e-2 | 2.0e-4 | 2.857
2 5 150 10 | 150 | 120 | 2.543e-2 | -6.047¢e-2 | 5.638e-2 | 5.0e-4 | 3.333
3 5 150 20 | 180 | 40 4.258e-2 | -5.094e-2 | 4.586e-2 | 1.0e-6 | 8.0
4 5 150 10 | 100 | 60 5.326e-2 | -3.550e-2 | 3.380e-2 | 2.0e-3 | 2.0
5 5 150 20 | 180 | 40 4.258e-2 | -5.094e-2 | 4.586e-2 | 1.0e-6 | 8.0
6 5 150 10 | 150 | 100 | 6.131e-2 | -5.555e-2 | 5.151e-2 | 1.0e-5 | 6.667
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TABLEIL THE BEST SOLUTION FOR FUEL COST AND NOy EMISSION.

w Generation (MW) Fuel cost NOy emission | P
Pg, Ps) Pgs Pga Pgs Pés ($/h) (ton/h) MW)
1 12.09691 | 28.63121 | 58.35574 | 99.28540 52.39700 | 35.18993 | 605.99837 | 0.220729 2.55619
Case A | 0 41.09251 | 46.36678 | 54.44194 | 39.03737 54.44590 | 51.54849 | 646.20699 | 0.194179 3.53300
0.5 | 22.55425 | 35.45564 | 57.00526 | 74.53983 54.82119 | 41.55654 | 612.25279 | 0.203570 2.53270

1 10.97194 | 29.97662 | 52.42982 | 101.61988 | 52.42982 | 35.97193 | 600.11141 | 0.222145 -
CaseB | 0 40.60738 | 45.90691 | 53.79387 | 38.29530 | 53.79384 | 51.00270 | 638.27344 | 0.194203 -
0.5 | 23.22984 | 36.03388 | 53.88180 | 74.57677 53.88179 | 41.79592 | 606.79829 | 0.203289 -

TABLE III. COMPARISON OF BEST SOLUTION FOR CASE A.

Methods Fuel cost minimization (w=1) | NO; emission minimization (w=0) | CEED minimization (w=0.5)
Fuel cost NO, emission Fuel cost NO, emission Fuel cost NO, emission
($/h) (ton/h) ($/h) (ton/h) ($/h) (ton/h)

ABC [1] 605.4258 0.2210 646.0455 0.1942 612.195 0.2035

MOPSO [3] 607.7900 0.2193 644.7400 0.1942 615.000 0.2021

GA [5] 607.7800 0.2199 645.2200 0.1942 - -

NSGA [5] 607.9800 0.2191 638.9800 0.1947 617.8000 0.2002

NPGA [5] 608.0600 0.2207 644.2300 0.1943 617.7900 0.2004

NSGA 11 [6] 607.8010 0.2189 644.1330 0.1942 - -

NSGA I [7] 613.6759 0.2223 648.7090 0.1942 - -

DE [8] 608.0658 0.2193 645.0850 0.1942 - -

DE [9] 606.0000 0.2217 645.5900 0.1942 - -

MODE [10] 606.4160 0.2221 643.5190 0.1942 614.170 0.2043

PSO[11] 607.8400 0.2192 642.9000 0.1942 - -

MBFA [12] 607.6700 0.2198 644.4300 0.1942 616.496 0.2002

MODE/PSO [14] | 606.0073 0.2209 646.0243 0.1942 - -

MA 0-PSO [15] 605.9984 0.2206 649.2070 0.1942 - -

GSA 605.99837 | 0.220729 646.20699 0.194179 612.25279 | 0.203570

TABLEIV. COMPARISON OF BEST SOLUTION FOR CASE B.

Methods Fuel cost minimization (w=1) | NO, emission minimization (w=0) | CEED minimization (w=0.5)
Fuel cost NO, emission Fuel cost NO, emission Fuel cost NO, emission
($/h) (ton/h) ($/h) (ton/h) ($/h) (ton/h)

SOA [2] 600.986 0.20889 640.749 0.18729 624.604 0.18708

MOPSO [3] 600.12 0.2216 637.42 0.1942 608.65 0.2017

GA [5] 600.11 0.2221 638.26 0.1942 - -

NSGA [5] 600.34 0.2241 633.83 0.1946 606.03 0.2041

NPGA [5] 600.31 0.2238 636.04 0.1943 608.90 0.2015

NSGA 11 [6] 600.155 0.22188 638.269 0.19420 - -

NSGA 11 [7] 600.7422 0.2204 636.7316 0.1942 R N

DE [8] 600.1114 0.2221 638.2907 0.1942 - -

DE [9] 600.11 0.2231 638.860 0.1952 - -

PSO[11] 600.13 0.2199 636.62 0.1943 - -

MBFA [12] 600.17 0.2200 636.73 0.1942 610.906 0.2000

MODE/PSO [14] | 600.115 0.22201 638.270 0.194203 - -

MA 6-PSO [15] 600.1114 0.2221 638.2734 0.1942 - -

GSA 600.11141 | 0.222145 638.27344 0.194203 606.79829 | 0.203289
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Fig. 1. Convergence characteristics of GSA in case fuel cost min. (w=1). Fig. 2. Convergence characteristics of GSA in case NOx emission min. (w=0).
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Fig. 3. Convergence characteristics of GSA in in case combine fuel cost and
NOy emission minimization - CEED (w=0.5).

V. CONCLUSION

In this paper, a GSA optimization algorithm has been
proposed and successfully applied to solve the CEED
problem. Simulation results show that the GSA approach
provides effective and robust high-quality solution. Moreover,
the results obtained using GSA are either better or comparable
to those obtained using other techniques reported in the
literature.
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