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Abstract— An modification of the Approximate Internal Model-
based Neural Control (AIMNC), using Multi Layer Perceptron
(MLP) neural networks is proposed. A necessary condition that
the system provides zero steady-state error for a constant
reference and constant disturbances is derived. In the proposed
control strategy only one neural network, which is the neural
model of the plant, needs to be trained off-line. An inverse neural
controller can be directly obtained from the neural model
without need for a further training. Simulations demonstrate
performance improvement of the proposed AIMNC modification.
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. INTRODUCTION

Different control techniques based on internal model are
often used for the control of nonlinear processes [1]-[5]. It is
known that Internal Model Control (IMC) compared to other
closed loop control techniques have advantages in terms of
robustness against disturbances and a model mismatch [3]. If
the process and the controller are input-output stable, and if the
internal model is perfect, then the control system is stable.

The IMC is based on the process model and its inversion
embedded in the controller. Even when the process model and
the controller are nonlinear, positive characteristics of the IMC
strategy in terms of stability, robustness and accuracy of the
steady-state provides a good basis for its application in the
control of nonlinear processes exposed to unknown
disturbances [1]. Since Neural Networks (NNs) are universal
approximators, their usage is a convenient way to model the
nonlinear input—output mapping and can be used within the
IMC structure shown in Fig. 1, as the internal process model as
well as inverse controller [6]-[8]. Although different
procedures of determining the appropriate neural model of the
plant and controller were used in past, it has been observed that
the performance of neural IMC became better when a
connection between these procedures was established [9], [10].

The aim of this paper is to demonstrate the possibilities of
neural IMC based on internal model approximation [11]-[13],
which provides zero steady-state error in the case of the
constant reference and constant disturbances. The necessary
condition that the system provides zero steady-state error
regardless of the model order and its accuracy is derived. In
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this paper, neuro model identification, calculation of the
control law and comparison of the modified AIMNC strategy
with performance of the fixed and adaptive IMC is presented.

II.  AIMNC CONTROLLER DESIGN

A.  The plant modeling

A general input—output representation for an n-dimensional
nonlinear discrete time system with relative degree d is [14]

y(k+d) = fTw,u(k)], M

where w, =[y(k), y(k—1),.... vk —n + 1), ulk =1),...utk—n+1] , u(k)eR ,
and y(k)er are the input and output of the system,
respectively, f:R"xR" >R and fecC” Equation (1)
represents  Nonlinear Autoregressive Moving Average
(NARMA) model. Different types of NNs have been
considered for modeling and control of nonlinear dynamical
systems. In this paper, a Multi Layer Perceptron (MLP) NN has
been used for modeling of nonlinear discrete time dynamical
systems due to its general approximation abilities. If there is
appropriate number of neurons in the hidden layers and
adequately determined free parameters, MLP NN can
approximate arbitrary continuous nonlinear function on a
compact subset ¢* of r”xRr" to the desired accuracy [6].

NN NARMA model is as follows [11],[12]:

y(k+d) = Nlwg,u(k)] + &, 2

where NJ[e] is a neuro model of the nonlinear dynamical

system and the weight vector of the NN is omitted for
simplicity, & is an model error. Taking into account the

disturbances acting on the plant, (2) can be written as

y(k +d) = Nlwy, u()] + vy, 3)

where v, takes into account the effect of uncertainties (model
error & and disturbances).
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B.  An approximation of NN model

NN controller in the IMC control structure is an inversion
of the NN model of the plant [6]. Hence, it is necessary to find
the inversion of nonlinear mapping, represented by the NN,
that models the nonlinear plant [1],[2]. Since the output of the
NN model (3) is nonlinearly dependent on its input, it is
difficult to derive its inversion and related control law. Thus in
[11]-[13], an approximate model is firstly derived for the
system (3) using Taylor expansion of N[w,,u(k)] with respect to

u(k) around u(k-1) as

y(k+d)=N[w,,u(k)]+v, =

= N[w, ,u(k =D+ Ny[w,, u(k —=DJAu(k) + R, +v,, “)

where Nylwy (ke —1)] = (BNTwy ,u(k —1)])/(Bu (k) and
Au(k) =u(k)-u(k-1) . Remainder g, is as follows

Ry :Nz[wk,é’k](Au(k))Z/Z, ©)

where Nz[wk,g’k]=(52N[wk,§k)])/(6u2(k)) with ¢, as a point
between u(k) and u(k-1).

Based on the assumptions made in [11], after neglecting the
reminder g, and the uncertainty v, in (4), the NN approximate

model 3,,(k+d) in the input—output form is derived as follows

Ytk +d) = Nw,,u(k =11+ N,[w, ,u(k —D)]Au(k). (6)

In (6), the control increment Au(k) appears linearly in the
output of the NN approximate model 3, (k+d) , thus the design

of the inverse NN controller can be simplified greatly. To
calculate the NN approximate model (6) and NN controller, the
calculation of N;[w,,u(k-1)] is needed. In this paper the basic

MLP structure with two hidden layers, shown in Fig. 2, has
been used for modeling of non-linear discrete time dynamical
systems. Inputs of the NN plant model at the time instant & are
w, and u(k-1). MLP in the first and second hidden layer has
neurons with hyperbolic tangent activation function and bias
input.

A linear activation function and bias input are used for the
output neuron. Double-layered MLP can be expressed as

NIwg,u(k)] = Weo Wy olWywi + Wiu(k) + b ]+ b1+ b3, (7)

Disturbance

r(k) Controller [#(k) Plant
+7 0 P
(k)

Internal Model
P

u(k)

Figure 1. The IMC structure

where wy, =[W, Wi,], WigeRM" | Wy, eRMY, Wy eRM™ and
W, e R¥2 are matrices of weights within the first hidden
layer, second hidden layer, and the output layer of the NN, 5,
b, and b; are bias vectors, and O'(X)=(eX —e ¥ )/(eX +e ¥ ) is
the vector of hyperbolic tangent activation functions with
input vector x .

If double-layered MLP Nw, u(k)] iS given by (7), then

following the idea in [12], Ny[w,,u(k-1)]is given by (8). Since
the derivative of o(x) is o'=1,,-0¢% with 7, as a L, -
dimensional unit matrix and z, as the number of neurons in i-
th hidden layer, one has

Ni[wy,u(k=1)]=Wy, (1L2 —‘720'2T)W21(111 —0'10'1T)W12: )

With o, = o[y w, +Wou(k—1)+b] and o, = o[Wyo, +b,] .

To determine the plant model and the controller only one
neural network, whose parameters are trained off-line, is
required. After that, the parameters of the obtained neural
network are used to calculate the approximate neural model
and its inversion as the controller in the IMC structure.

C. A controller design
From (6) the control increment au(k) is as follows

Au(k) = (9, (k +d) = N[wg,u(k =)/ Ny[w,,u(k =1)]. (9
The control increment in (6) can be divided into two parts [12]
Au(k) = Au, (k) + Au, (k), (10)

where Au, (k) is the nominal control increment and Au.(k) iS

used to compensate the model error and disturbances. Using
(10), (6) becomes

Y (ke +d) = NIweulk =1)]+ Ny [w u(k =] A, (k) + Au, (k). (11)

When the model is exact and there are no disturbances, i.e. in
the nominal case, the NN approximate model is as follows

Ptk +d) = N[w, ,u(k =21+ Ny [w, ,u(k —D]Au, (k). (12)

N[wy,u(k -1)]

Figure 2. Double-layered MLP structure
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If the NN approximate model given by (12) has a stable
inverse, then the nominal control increment Au,(k) can be

calculated directly as follows

Au, (k) = (r(k+d) — Nlw, ,u(k =01/ Ny[w, ,u(k-1)], (13)
where r(k+d) is the reference signal at time instant (k+d) . The
nominal control law is determined as follows

u(k) =u(k —1) + Au, (k). (14)
If the NN approximate model given by (12) has an unstable
inversion, it is needed that (13) should be modified by
introducing the parameter «, as proposed in [12], according to

Au, (k) = a(r(k+d)— N[w,,u(k =)1)/ Ny[w, ,u(k-1)], (15)
where 0<a <1. Introduction of the parameter « ensure that the
control law given by (14) is bounded. The parameter « can be
1 in the case of NN approximate model has the stable inverse.
Conditions for the stability of the nominal NN controller (14)
are detailed in [12].

In the presence of the plant model error and disturbances,
substituting (10) in to (4), gives

Wk +d) = NDwe,ulk D1+ Ny, u(k ~)]Au, (k)

(16)
+ N[, u(k —D]Au. (k) + R, +v,.
Define NN approximate model error (k) as
&(k) = y(k) = 3, (k). a7

The control increment Au (k) for compensation of the model
error and disturbances is as follows [12]

Au, (k) = —e(k) | Ny[w, ,u(k -1)].

(18)

NNs, N and derivative N;
N(w; u(k=1)) Np(w,u(k-1)

Based on (10), (15) and (18) the control law is expressed as

u(k) =u(k -1+ a(r(k+d)— Nlw,,u(k -1)]) (19)
I Ni[wy,u(k =1 - e(k) ! Ni[wy, u(k -1)].

The control law (19) consists of the nominal NN controller and

uncertainties compensation. The analysis of robustness and

stability of the control law (19) is given in [12].

The conceptual structure of the modified AIMNC with the
control law given by (19) and NN approximate model given by

12) is shown in Fig. 3. With s(z™) is labeled set point filter,
(12) is sh in Fi ith 1y is labeled int fil

with F(z™') robustness filter, where 7 is backward shift
operator [15]. The role of the blocks marked with "Scale" in
Fig. 3. will be explained in paragraph V.

Il.  AIMNC WITH ZERO STEADY-STATE ERROR

A positive feature of the IMC control structure that zero
steady-state error in the system can be achieved if we ensure
that the steady-state gain of the controller is inverse value of
the steady-state gain of the model [3]. The performances of the
AIMNC structure are given in [12], without the necessary
conditions that the system has zero steady-state error for the
case of a constant reference and constant disturbances. From
Fig. 3. it is evident that the AIMNC structure differs from the
classical IMC structure given in Fig. 1. A signal, which is input
to the NN approximate plant model is different from the
control signal to the plant, and it is necessary to define the
conditions under which we can achieve zero steady state error.

Consider the conditions under which it is possible to
achieve the satisfactory accuracy of the steady-state with
AIMNC structure in Fig. 3. in the case of the constant reference
signal and constant disturbances. If the system has zero steady-
state error then y(k)=r(k) and Au(k)=u(k)-u(k-1)=0 , then
using (17) and (19), one has

Au(k) = a(r(k +d) — Nlw,,u(k =11)/ N,[w; ,u(k -1)]
—e(k)! Ny[w,,u(k-1)]1=0,
ar(k +d)— aN[w, ,u(k -1)] - (k) =0,

ar(k +d)—aN[w, ,u(k -] - y(k) + ,, (k) = 0. (20)

Disturbance

“

Scal
= Auy( Plant V(kz
. A4
Nominal Control Increment NN Aproximate Model . +
@ sEY) Aun(k)]| . 5,k =/ b
ar(k-%—d)—N(wA,u(k—l)) P P (k+d)=N(wg,u(k-1)+ >
N, (wy,u(k-1)) + Nqi(wy,u(k —1))Au, (k) ! e(k)

Au(k)

Uncertainty Compensation

-
N (weu(k—1)

Figure 3. The conceptual structure of the modified AIMNC
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In the steady-state 5, (k)=7,(k+1))=..=7,(+d)
Substituting (12) and (15) in to (20), one has

ar(k +d)—aN[w,,u(k -1)] - y(k) + N[w,,u(k —1)]
+a(r(k+d)— Nlw,,u(k-1)]) =0,
20(r(k +d)— N[w,,u(k -1)]) = y(k) = N[w,,u(k —1)],
1 (k)= Nlw, u(k-D)]
2 r(k+d)—Nlw,,u(k-1)]

@n

In the steady-state one has r(k)=r(k+1) =...= r(k+d) and the
system  will have zero  steady-state  error  if
y(k) = r(k) = r(k +1) =...= r(k +d) . It follows from (21) that « =0.5
is the necessary condition that the system in Fig. 3. has zero
steady-state error in the case of the constant reference signal
and constant disturbances.

IV. PERFORMANCE OF THE AIMNC STRATEGY

We conducted a sequence of simulations to show the
performance of the AIMNC strategy and verify that for the
value «=0.5 system achieves zero steady-state error for the
constant reference signal and constant disturbances. The
selected plant is described by nonlinear difference equation

y(k+12) =O.55in(y(k))+3u(k)+mz)u(k))+dk, (22)
1+y"(k)

where 4, is the disturbance.

A. The NN model of the plant

The basic MLP structure with two hidden layers, described
in Fig. 2, has been used for modeling of the nonlinear discrete
dynamical system. Inputs of the NN for modeling at time
instant k are w, =[y(k)] and «(k-1), and output is y(k +1) . MLP

in each hidden layer has 10 neurons with hyperbolic tangent
activation functions and bias inputs. The linear activation
function with a bias term are used for the output neuron.

Training set consists of 500 pairs y(k) and u(k-1), which

represented the input vector of the MLP at time instant &, and
desired output values y(k +1) were obtained from (22). The

Value

i H i i
o 100 200 300 400 500
Samples

Figure 4. Reference r , disturbance d, ,system y and model y,, outputs

values of u(k),k=1..,500 were chosen as random numbers in
the range of [-2 2], and generated 501 values of y(x) were in
the range [-6.45 6.55].

For the NN training, a MATLAB function “newnarxsp”
has been used. The inputs to the MLP and outputs were scaled
to the range [-1 1], training algorithm used Levenberg-
Marquart method, a number of training epochs was 1000 and
achieved a mean square error of 5.74x10™. As a result of off-
line training we obtained matrices Wy, =7, Wy,1, Wi e R™?,

Wi, e RO w, e R0 and wy, e RM° and vectors b, b, and
bg , With dimensions 10x1, 10x1 and 1x1, respectively.

B.  The accuracy of AIMNC in steady-state

We performed a simulation of the AIMNC strategy given in
Fig. 3. with the obtained MLP. Set point filter and robustness
filter were set as sz%y=1 and r(z"1)=1, respectively. The blocks
marked with a “Scale” in Fig. 3. are introduced for the reason
that the off-line training of MLP performs scaling of inputs and
the output to the desired range [-1 1]. So to calculate NMw,u(k)]

in the AIMNC structure it is necessary to scale inputs within
the range [-1 1], and the output in the range [-6.45 6.55].

The parameter « value of 0.5 was chosen based on the
necessary condition to achieving the zero steady-state error in
case of the constant reference signal and constant disturbances
acting on system shown in the Fig.3. Reference r(x) has been
chosen to take the values of 0.5, 6, 0.5, -6 and 0, successively
for five period of 100 samples, and disturbance 4, had a non-

zero value from samples 230 to 260, i.e. the value equal 1 when
the reference r(k) had the value of 0.5.

Fig. 4. shows satisfactory behavior of the proposed
modified AIMNC strategy and confirms that the choice of
parameter « =05 achieves zero steady-state error for the
constant reference signal and constant disturbances. Additional
testing of the accuracy was done through simulation for
different values of the parameter « =0.51 and « =0.49 . Fig. 5.
shows the part of system response from samples 230 to 260, for
the reference signal r(x)=0.5 and disturbance 4, =1. Clearly,

the system has zero steady-state error for the constant reference
signal and constant disturbance only in the case whena =0.5.

- —— F=0.5

¥, a=0.5
Ty e=051

0g5 Tty a=0.49

04+

03 i L i
200 230 260 290 300
Samples

Figure 5. System output y for different values of «
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C. The robustness to the model mismatch

In addition to the stability and accuracy of the control
systems one of the important feature is robustness to the model
mismatch that is used for the controller design, and as an
integral part of the AIMNC structure. The simulation of the
AIMNC strategy for the plant described by equation

P ’ sin(0.7y(k)u(k))
y(k+1) =0.7sin(y(k)) + 2.5 (k)+—1.2+y2(k) +d,, (23)

with already trained NN approximate models have been
performed. The plant model given by (23) is significantly
different from the nominal plant given by (22) in order to test
the robustness of the modified AIMNC strategy.

Fig. 6. show satisfactory behavior of the proposed modified
AIMNC strategy for the significant model mismatch. Also,
when the significant model mismatch exist the system has zero
steady-state error for the constant reference signal and constant
disturbances only in the case with the value «=05.

D. The performance verification

The comparison of the AIMNC strategy with respect to
performance of the fixed and adaptive IMC is presented.
Design of the fixed and adaptive IMC are presented in [16].

1) Fixed linear IMC: Simulation of the IMC control
strategy in Fig. 1. with fixed parameters of the linear internal
model and the controller was performed. An adjustment of the
controller parameters is achieved on the basis of the obtained

Samplos

Figure 6. System output y for the plant given by (23)

Figure 7. Reference r , disturbance d; and outputs y , y e and y e

linear model of the plant. The obtained linear internal model
describes well the dynamics of the selected plant given by (22)
for changes of the plant output in the range of 0 to 3. Internal
model p(z) is given by (24), and controller g(z") described
by (25) was determined by pole-zero placement of the discrete
transfer function [17]- [19].

= 4. bzt 284927 24
Pl )7171112’17170.082’1' 24)

0= = Q-p) (-az") _(1-08) (1—0.082’1)‘ (25)
by (-pz) 28492 (1-08z7)

The transfer function of the controller is in given form that
provides the closed-loop system has zero steady-state error.
Selecting the desired pole of the closed-loop system determines
the quality of the step response.

2) Adaptive IMC: Simulation of the adaptive control based
on internal model was performed. In the case of adaptive IMC
strategy, the method of on-line calculation of the controller
parameters based on parameter estimation of the plant dynamic
model is applied [16]. Adaptation of the parameters 4, and 5
of the model given by (24) and the controller given by (25),
respectively, is performed using the recursive least-squares
mean algorithm with forgetting factor [15]. For adaptive
dynamic model of the plant y -, Was chosen in the form:

Y amacm = @Y amacm (b =1) + bu(k - 1). (26)

H e

H ginse

Figure 8. Control actions u, uppc and u gy c

a

Figure 9. Model errors ¢, epnem and e nicm
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TABLE I. MEAN SQUARE ERROR

AIMNC
MSE 0.7004

Fixed IMC
0.8210

Adaptive IMC
0.7246

Using this parallel model, the value of the controller output,
in the steady state, is the exact inverse of the plant model
output, which is a necessary condition for the closed loop
system has the zero steady-state error. Recursive equations for
the covariance matrix p(x) and the vector of the parameters

©=[a; B | calculations are shown below

p = 2] pee 1y D00 (126D | @7)
A A=g" (k)P(k—1)p(k)
© =0+ P(k)p(k)e snrcm (k) (28)

where 2=0.99 is a forgetting factor, o(k)=[y ypcm k) u(k-D]"

is regression vector and e ;,c, (k) = y(k) - o7 (k)© is the model

error. The initial values of the covariance matrix and vector of
the parameters were, respectively, p()-s.1,,, and e=[oos 2" .

The desired pole of the closed-loop system has been
calculated as p;=095-(1-4)/2 . The set point filter with

transfer function s(z) = (1-0.51)/(1-0.51z"1) was used.

3) Performance comparison: Comparative analysis of
important signals of the considered control strategies confirmed
the satisfactory performance of the modified AIMNC control
law.

Fig. 7. shows the reference and the system outputs with
modified AIMNC, fixed and adaptive IMC control law. All
control strategies have satisfactory behavior in the nominal
case and under disturbance and zero steady-state error. All
considered IMC control strategies have similar control signals,
as was expected, since all control strategies have satisfactory
performance, Fig.8. Model errors of the considered control
strategies are shown in Fig. 9. Although internal model for
adaptive IMC has the smallest error in the steady state when
there is no disturbance, modified AIMNC achieves better
performance. For the performance of the IMC strategy it is
important to note that the controller represents the inversion of
the internal model as accurate as possible.

Values of the Mean Square Error (MSE) for 500 sampling
periods are given in the Table 1. MSE for modified AIMNC
strategy is the smallest.

V. CONCLUSION

This paper has presented an improvement of the AIMNC
structure. The procedure of designing the model and controller
is shown and derived the necessary condition for the accuracy
of the system in steady state for the constant reference and
constant disturbances. The necessary condition for the accuracy
of AIMNC strategy derived in this paper is the significant
contribution to the procedure of designing the system based on
the NN approximate internal model, since it is one of the most
common requests that the automatic control system provides
the zero steady-state error.

A series of simulations has confirmed the accuracy of the
modified AIMNC structure at steady state. Detailed
comparison of the AIMNC strategy with performance of the
fixed and adaptive IMC is carried out and demonstrate
satisfactory behavior of modified AIMNC strategy.
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