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Abstract— An modification of the Approximate Internal Model-
based Neural Control (AIMNC), using Multi Layer Perceptron 
(MLP) neural networks is proposed. A necessary condition that 
the system provides zero steady-state error for a constant 
reference and constant disturbances is derived. In the proposed 
control strategy only one neural network, which is the neural 
model of the plant, needs to be trained off-line. An inverse neural 
controller can be directly obtained from the neural model 
without need for a further training. Simulations demonstrate 
performance improvement of the proposed AIMNC modification. 
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I.  INTRODUCTION 
Different control techniques based on internal model are 

often used for the control of nonlinear processes [1]-[5]. It is 
known that Internal Model Control (IMC) compared to other 
closed loop control techniques have advantages in terms of 
robustness against disturbances and a model mismatch [3]. If 
the process and the controller are input-output stable, and if the 
internal model is perfect, then the control system is stable. 

The IMC is based on the process model and its inversion 
embedded in the controller. Even when the process model and 
the controller are nonlinear, positive characteristics of the  IMC 
strategy in terms of stability, robustness and accuracy of the 
steady-state provides a good basis for its application in the 
control of nonlinear processes exposed to unknown 
disturbances [1]. Since Neural Networks (NNs) are universal 
approximators, their usage is a convenient way to model the 
nonlinear input–output mapping and can be used within the 
IMC structure shown in Fig. 1, as the internal process model as 
well as inverse controller [6]-[8]. Although different 
procedures of determining the appropriate neural model of the 
plant and controller were used in past, it has been observed that 
the performance of neural IMC became better when a 
connection between these procedures was established [9], [10]. 

The aim of this paper is to demonstrate the possibilities of 
neural IMC based on internal model approximation [11]-[13], 
which provides zero steady-state error in the case of the 
constant reference and constant disturbances. The necessary 
condition that the system provides zero steady-state error 
regardless of the model order and its accuracy is derived. In  

this paper, neuro model identification, calculation of the 
control law and comparison of the modified AIMNC strategy 
with performance of the fixed and adaptive IMC is presented. 

II. AIMNC CONTROLLER DESIGN 

A.  The plant modeling 
A general input–output representation for an n-dimensional 

nonlinear discrete time system with relative degree d is [14] 

 )],(,[)( kuwfdky k=+  (1) 

where )]1(),...,1(),1(),...,1(),([ +−−+−−= nkukunkykykywk , Rku ∈)( , 
and Rky ∈)(  are the input and output of the system, 
respectively, RRRf nn →×:  and ∞∈Cf . Equation (1) 
represents Nonlinear  Autoregressive Moving Average 
(NARMA) model. Different types of NNs have been 
considered for modeling and control of nonlinear dynamical 
systems. In this paper, a Multi Layer Perceptron (MLP) NN has 
been used for modeling of nonlinear discrete time dynamical 
systems due to its general approximation abilities. If there is 
appropriate number of neurons in the hidden layers and 
adequately determined free parameters, MLP NN can 
approximate arbitrary continuous nonlinear function on a 
compact subset  ∞C  of nn RR ×  to the desired accuracy [6]. 

NN NARMA model is as follows [11],[12]: 

 ,)](,[)( kk kuwNdky ξ+=+  (2) 

where ][•N  is a neuro model of the nonlinear dynamical 
system and the weight vector of the NN is omitted for 
simplicity, kξ   is an model error. Taking into account the 
disturbances acting on the plant, (2) can be written as 

 ,)](,[)( kk vkuwNdky +=+  (3) 

where kv  takes into account the effect of uncertainties (model 
error kξ  and disturbances). 
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B. An approximation of NN model 
NN controller in the IMC control structure is an inversion 

of the NN model of the plant [6]. Hence, it is necessary to find 
the inversion of nonlinear mapping, represented by the NN, 
that models the nonlinear plant [1],[2]. Since the output of the 
NN model (3) is nonlinearly dependent on its input, it is 
difficult to derive its inversion and related control law. Thus in 
[11]-[13], an approximate model is firstly derived for the 
system (3) using Taylor expansion of )](,[ kuwN k  with respect to 

)(ku  around )1( −ku  as 

 
,)()]1(,[)]1(,[

)](,[)(

1 kkkk

kk

vRkukuwNkuwN
vkuwNdky

++Δ−+−=
=+=+

 (4) 

where ( ) ( ))(/)]1(,[)]1(,[1 kukuwNkuwN kk ∂−∂=−  and 
)1()()( −−=Δ kukuku . Remainder kR  is as follows 

 ,2/))(](,[ 2
2 kuwNR kkk Δ= ζ  (5) 

where ( ) ( ))(/)],[],[ 22
2 kuwNwN kkkk ∂∂= ζζ  with kζ  as a point 

between )(ku  and )1( −ku . 

Based on the assumptions made in [11], after neglecting the 
reminder kR  and the uncertainty kv  in (4), the NN approximate 
model )(ˆ dkym +  in the input–output form is derived as follows 

 ).()]1(,[)]1(,[)(ˆ 1 kukuwNkuwNdky kkm Δ−+−=+  (6) 

In (6), the control increment )(kuΔ  appears linearly in the 
output of the NN approximate model )(ˆ dkym + , thus the design 
of the inverse NN controller can be simplified greatly. To 
calculate the NN approximate model (6) and NN controller, the 
calculation of )]1(,[1 −kuwN k  is needed. In this paper the basic 
MLP structure with two hidden layers, shown in Fig. 2, has 
been used for modeling of non-linear discrete time dynamical 
systems. Inputs of the NN plant model at the time instant k are 

kw  and )1( −ku . MLP in the first and second hidden layer has 
neurons with hyperbolic tangent activation function and bias 
input. 

A linear activation function and bias input are used for the 
output neuron. Double-layered MLP can be expressed as 

 ,]])([[)](,[ 32112112132 bbbkuWwWWWkuwN kk ++++= σσ  (7) 
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Figure 1.  The IMC structure 

where ][ 121110 WWW = , nxLRW 2
10

1∈ , 1
12

1xLRW ∈ , 12
21

xLLRW ∈  and 
21

32
xLRW ∈  are matrices of weights within the first hidden 

layer, second hidden layer, and the output layer of the NN, 1b , 

2b  and 3b  are bias vectors, and ( ) ( )XXXX eeeeX −− +−= /)(σ  is 
the vector of hyperbolic tangent activation functions with 
input vector X . 

If double-layered MLP )](,[ kuwN k  is given by (7), then 
following the idea in [12], )]1(,[1 −kuwN k is given by (8). Since 
the derivative of )(Xσ  is 2σσ −=′ LiI  with LiI  as a iL - 
dimensional unit matrix and iL  as the number of neurons in i-
th hidden layer, one has 

 ,)()()]1(,[ 12112122321 12
WIWIWkuwN T

L
T

Lk σσσσ −−=−  (8) 

with ])1([ 112111 bkuWwW k +−+= σσ  and [ ]21212 bW += σσσ . 

To determine the plant model and the controller only one 
neural network, whose parameters are trained off-line, is 
required. After that, the parameters of the obtained neural 
network are used to calculate the approximate neural model 
and its inversion as the controller in the IMC structure. 

C. A controller design 
From (6) the control increment )(kuΔ  is as follows 

 )].1(,[/)])1(,[)(ˆ()( 1 −−−+=Δ kuwNkuwNdkyku kkm  (9) 

The control increment in (6) can be divided into two parts [12] 

 ),()()( kukuku cn Δ+Δ=Δ  (10) 

where )(kunΔ  is  the  nominal  control  increment  and )(kucΔ  is  
used  to  compensate  the model error and disturbances. Using 
(10), (6) becomes 

     )).()()](1(,[)]1(,[)(ˆ 1 kukukuwNkuwNdky cnkkm Δ+Δ−+−=+  (11) 

When the model is exact and there are no disturbances, i.e. in 
the nominal case, the NN approximate model is as follows 

 ).()]1(,[)]1(,[)(ˆ 1 kukuwNkuwNdky nkkm Δ−+−=+  (12) 
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Figure 2.  Double-layered  MLP structure 
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If the NN approximate model given by (12) has a stable 
inverse, then the nominal control increment )(kunΔ  can be 
calculated directly as follows 

 )],1(,[/)])1(,[)(()( 1 −−−+=Δ kuwNkuwNdkrku kkn  (13) 

where )( dkr +  is the reference signal at time instant )( dk + . The 
nominal control law is determined as follows 

 ).()1()( kukuku nΔ+−=  (14) 

If the NN approximate model given by (12) has an unstable 
inversion, it is needed that (13) should be modified by 
introducing the parameter α , as proposed in [12], according to 

 )],1(,[/)])1(,[)(()( 1 −−−+=Δ kuwNkuwNdkrku kkn α  (15) 

where 10 ≤< α . Introduction of the parameter α  ensure that the 
control law given by (14) is bounded. The parameter α  can be 
1 in the case of NN approximate model has the stable inverse. 
Conditions for the stability of  the nominal NN controller (14) 
are detailed in [12]. 

In the presence of the plant model error and disturbances, 
substituting (10) in to (4), gives 

 
.)()]1(,[

)()]1(,[)]1(,[)(

1

1

kkck

nkk

vRkukuwN
kukuwNkuwNdky

++Δ−+
Δ−+−=+

 (16) 

Define NN approximate model error )(kε as 

 ).(ˆ)()( kykyk m−=ε  (17) 

The control  increment )(kucΔ for compensation of the model 
error and disturbances  is as follows [12] 

 )].1(,[/)()( 1 −−=Δ kuwNkku kc ε  (18) 

Based on (10), (15) and (18) the control law is expressed as 

 
)].1(,[/)()]1(,[/

)])1(,[)(()1()(

11 −−−

−−++−=

kuwNkkuwN
kuwNdkrkuku

kk

k

ε
α

 (19) 

The control law (19) consists of the nominal NN controller and 
uncertainties compensation. The analysis of robustness and 
stability of the control law (19) is given in [12]. 

The conceptual structure of the modified AIMNC with the 
control law given by (19) and NN approximate model given by 
(12) is shown in Fig. 3. With )( 1−zS  is labeled set point filter, 
with )( 1−zF  robustness filter, where 1−z  is backward shift 
operator [15]. The role of the blocks marked with "Scale" in 
Fig. 3. will be explained in paragraph IV. 

III. AIMNC WITH ZERO STEADY-STATE ERROR 
A positive feature of the IMC control structure that zero 

steady-state error in the system can be achieved if we ensure 
that the steady-state gain of the controller is inverse value of 
the steady-state gain of the model [3]. The performances of the 
AIMNC structure are given in [12], without the necessary 
conditions that the system has zero steady-state error for the 
case of a constant reference and constant disturbances. From 
Fig. 3. it is evident that the AIMNC structure differs from the 
classical IMC structure given in Fig. 1. A signal, which is input 
to the NN approximate plant model is different from the 
control signal to the plant, and it is necessary to define the 
conditions under which we can achieve zero steady state error. 

Consider the conditions under which it is possible to 
achieve the satisfactory accuracy of the steady-state with 
AIMNC structure in Fig. 3. in the case of the constant reference 
signal and constant disturbances. If the system has zero steady- 
state error then )()( krky =  and 0)1()()( =−−=Δ kukuku , then 
using (17) and (19), one has 

 
,0)]1(,[/)(

)]1(,[/)])1(,[)(()(

1

1

=−−

−−−+=Δ

kuwNk
kuwNkuwNdkrku

k

kk

ε
α

 

 ,0)()]1(,[)( =−−−+ kkuwNdkr k εαα   
 .0)(ˆ)()]1(,[)( =+−−−+ kykykuwNdkr mkαα  (20) 
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Figure 3.  The conceptual structure of the modified AIMNC 
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In the steady-state )(ˆ...))1(ˆ)(ˆ dkykyky mmm +==+= . 
Substituting (12) and (15) in to (20), one has 

 
,0)])1(,[)((

)]1(,[)()]1(,[)(
=−−++

−+−−−+

kuwNdkr
kuwNkykuwNdkr

k

kk

α
αα

 

 )],1(,[)()])1(,[)((2 −−=−−+ kuwNkykuwNdkr kkα   

 .
)]1(,[)(

)]1(,[)(
2
1

−−+
−−

⋅=
kuwNdkr

kuwNky

k

kα  (21) 

In the steady-state one has )(...)1()( dkrkrkr +==+=  and the 
system will have zero steady-state error if 

)(...)1()()( dkrkrkrky +==+== . It follows from (21) that 5.0=α  
is the necessary condition that the system in Fig. 3. has zero 
steady-state error in the case of the constant reference signal 
and constant disturbances. 

IV. PERFORMANCE OF THE AIMNC STRATEGY 
We conducted a sequence of simulations to show the 

performance of the AIMNC strategy and verify that for the 
value 5.0=α  system achieves zero steady-state error for the 
constant reference signal and constant disturbances. The 
selected plant is described by nonlinear difference equation 

 ,
)(1

))()(sin()(3))(sin(5.0)1( 2 kd
ky

kukykukyky +
+

++=+  (22) 

where kd  is the disturbance. 

A. The NN model of the plant 
The basic MLP structure with two hidden layers, described 

in Fig. 2, has been used for modeling of the nonlinear discrete 
dynamical system. Inputs of the NN for modeling at time 
instant k are [ ])(kywk =  and )1( −ku , and output is )1( +ky . MLP 
in each hidden layer has 10 neurons with hyperbolic tangent 
activation functions and bias inputs. The linear activation 
function with a bias term are used for the output neuron. 

Training set consists of 500 pairs )(ky  and )1( −ku , which 
represented the input vector of the MLP at time instant k, and 
desired output values )1( +ky were obtained from (22). The 

 
Figure 4.  Reference r , disturbance kd , system y  and model mŷ  outputs 

values of  500,...,1),( =kku  were chosen as random numbers in 
the range of [ ]22− , and generated 501 values of )(ky  were in 
the range [ ]55.645.6− . 

For the NN training,  a MATLAB function “newnarxsp” 
has been used. The inputs to the MLP and outputs were scaled 
to the range [ ]11− , training algorithm used Levenberg-
Marquart method, a number of training epochs was 1000 and 
achieved a mean square error of 5.74x10-6. As a result of off-
line training we obtained matrices ][ 121110 WWW = , 210

10
×∈ RW , 

110
12

×∈ RW , 1010
21

×∈ RW  and 101
32

×∈ RW  and vectors 1b , 2b  and 
3b , with dimensions 10x1, 10x1 and 1x1, respectively. 

B. The accuracy of AIMNC in steady-state 
We performed a simulation of the AIMNC strategy given in 

Fig. 3. with the obtained MLP. Set point filter and robustness 
filter were set as 1)( 1 =−zS  and 1)( 1 =−zF , respectively. The blocks 
marked with a “Scale” in Fig. 3. are introduced for the reason 
that the off-line training of MLP performs scaling of inputs and 
the output to the desired range [ ]11− . So to calculate )](,[ kuwN k  
in the AIMNC structure it is necessary to scale inputs within 
the range [ ]11− , and the output in the range [ ]55.645.6− . 

The parameter α  value of 0.5 was chosen based on the 
necessary condition to achieving the zero steady-state error in 
case of the constant reference signal and constant disturbances 
acting on system shown in the Fig.3. Reference )(kr  has been 
chosen to take the values of 0.5, 6, 0.5, -6 and 0, successively 
for five period of 100 samples, and disturbance kd  had a non-
zero value from samples 230 to 260, i.e. the value equal 1 when 
the reference )(kr  had the value of 0.5. 

Fig. 4. shows satisfactory behavior of the proposed 
modified AIMNC strategy and confirms that the choice of 
parameter 5.0=α  achieves zero steady-state error for the 
constant reference signal and constant disturbances. Additional 
testing of the accuracy was done through simulation for 
different values of the parameter 51.0=α  and 49.0=α . Fig. 5. 
shows the part of system response from samples 230 to 260, for 
the reference signal 5.0)( =kr  and disturbance 1=kd . Clearly, 
the system has zero steady-state error for the constant reference 
signal and constant disturbance only in the case when 5.0=α . 

 
Figure 5.  System output y  for different values of α  
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C. The robustness to the model mismatch 
In addition to the stability and accuracy of the control 

systems one of the important feature is robustness to the model 
mismatch that is used for the controller design, and as an 
integral part of  the AIMNC structure. The simulation of the 
AIMNC strategy for the plant described by equation 

 ,
)(2.1

))()(7.0sin()(5.2))(sin(7.0)1( 2 kd
ky

kukykukyky +
+

++=+  (23) 

with already trained NN approximate models have been 
performed. The plant model given by (23) is significantly 
different from the nominal plant given by (22) in order to test 
the robustness of the modified AIMNC strategy. 

Fig. 6. show satisfactory behavior of the proposed modified 
AIMNC strategy for the significant model mismatch. Also, 
when the significant model mismatch exist the system has zero 
steady-state error for the constant reference signal and constant 
disturbances only in the case with the value 5.0=α . 

D. The performance verification 
The comparison of the AIMNC strategy with respect to 

performance of the fixed and adaptive IMC is presented. 
Design of the fixed and adaptive IMC are presented in [16]. 

1) Fixed linear IMC: Simulation of the IMC control 
strategy in Fig. 1. with fixed parameters of the linear internal 
model and the controller was performed. An adjustment of the 
controller parameters is achieved on the basis of the obtained 

 
Figure 6.  System output y  for the plant given by (23) 

 
Figure 7.  Reference r , disturbance kd  and outputs y , FIMCy  and AIMCy  

linear model of the plant. The obtained linear internal model 
describes well the dynamics of the selected plant given by (22) 
for changes of the plant output in the range of 0 to 3. Internal 
model )(

~ 1−zP   is given by (24), and controller )( 1−zQ  described 
by (25) was determined by pole-zero placement of the discrete 
transfer function [17]- [19]. 
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The transfer function of the controller is in given form that 
provides the closed-loop system has zero steady-state error. 
Selecting the desired pole of the closed-loop system determines 
the quality of the step response. 

2) Adaptive IMC: Simulation of the adaptive control based 
on internal model was performed. In the case of adaptive IMC 
strategy, the method of on-line calculation of the controller 
parameters based on parameter estimation of the plant dynamic 
model is applied [16]. Adaptation of the parameters 1a  and 1b  
of the model given by (24) and the controller given by (25), 
respectively, is performed using the recursive least-squares 
mean algorithm with forgetting factor [15]. For adaptive 
dynamic model of the plant AIMCmy  was chosen in the form: 

 ).1()1( 11 −+−= kubkyay AIMCmAIMCm  (26) 

 
Figure 8.  Control actions u , FIMCu  and AIMCu  

 
Figure 9.  Model errors ε , FIMCme  and AIMCme  
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TABLE I.  MEAN SQUARE ERROR 

 AIMNC Fixed IMC Adaptive IMC 
MSE 0.7004 0.8210 0.7246 

 
Using this parallel model, the value of the controller output, 

in the steady state, is the exact inverse of the plant model 
output, which is a necessary condition for the closed loop 
system has the zero steady-state error. Recursive equations for 
the covariance matrix )(kP  and the vector of the parameters 

[ ]Tba 11=Θ  calculations are shown below 

 ,
)()1()(

)1()()()1()1(1)(
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−−
−−

−−=
kkPk

kPkkkPkPkP T

T

ϕϕλ
ϕϕ

λ
 (27) 

 ),()()( kekkP AIMCmϕ+Θ=Θ  (28) 

where 99.0=λ  is a forgetting factor, [ ]TAIMCm kukyk )1()()( −=ϕ  
is regression vector and Θ−= )()()( kkyke T

AIMCm ϕ  is the model 
error. The initial values of the covariance matrix and vector of 
the parameters were, respectively, [ ]225)0( ×⋅= IP , and [ ]T208.0=Θ . 

The desired pole of the closed-loop system has been 
calculated as 2/)1(95.0 11 ap −−= . The set point filter with 
transfer function )51.01/()51.01()( 1−−−= zzS  was used. 

3) Performance comparison: Comparative analysis of 
important signals of the considered control strategies confirmed 
the satisfactory performance of the modified AIMNC control 
law. 

Fig. 7. shows the reference and the system outputs with 
modified AIMNC, fixed and adaptive IMC control law. All 
control strategies have satisfactory behavior in the nominal 
case and under disturbance and zero steady-state error. All 
considered IMC control strategies have similar control signals, 
as was expected, since all control strategies have satisfactory 
performance, Fig.8. Model errors of the considered control 
strategies are shown in Fig. 9. Although internal model for 
adaptive IMC has the smallest error in the steady state when 
there is no disturbance, modified AIMNC achieves better 
performance. For the performance of the IMC strategy it is 
important to note that the controller represents the inversion of 
the internal model as accurate as possible. 

Values of the Mean Square Error (MSE) for 500 sampling 
periods are given in the Table 1. MSE for modified AIMNC 
strategy is the smallest. 

V. CONCLUSION 
This paper has presented an improvement of the AIMNC 

structure. The procedure of designing the model and controller 
is shown and derived the necessary condition for the accuracy 
of the system in steady state for the constant reference and 
constant disturbances. The necessary condition for the accuracy 
of AIMNC strategy derived in this paper is the significant 
contribution to the procedure of designing the system based on 
the NN approximate internal model, since it is one of the most 
common requests that the automatic control system provides 
the zero steady-state error. 

A series of simulations has confirmed the accuracy of the 
modified AIMNC structure at steady state. Detailed 
comparison of the AIMNC strategy with performance of the 
fixed and adaptive IMC is carried out and demonstrate 
satisfactory behavior of modified AIMNC strategy. 

REFERENCES 
 

[1] K.J.Hunt and D.Sbarbaro, “Neural networks for nonlinear internal model 
control”, IEE Proceedings-D, vol. 138, no. 5, pp. 431-438, September, 
1991. 

[2] C.Kambhampati, R.J.Craddock, M.Tham, and K.Warwick, “Inverse 
model control using recurrent networks”, Mathematics and Computers 
in Simulation, vol. 51, pp. 181-199, 2000. 

[3] M.Morari and E.Zafiriou, Robust Process Control, Englewood Cliffs, 
NJ: Prentice-Hall, Inc., 1989. 

[4] I. Rivals and L.Personnaz, “Internal Model Control Using Neural 
Networks”  Proceedings of the IEEE International Symposium on 
Industrial Electronics, pp. 109–114, Warsaw, June 17-20, 1996. 

[5] I.Rivals and L.Personnaz, “Nonlinear internal model control using 
neural  networks:  Application  to  processes  with  delay  and  design 
issues,”  IEEE  Transactions on Neural Networks,  vol.  11,  no.  1,  pp.  
80–90,  January, 2000. 

[6] M.Sanguineti, “Universal Approximation by Ridge Computational 
Models and Neural Networks: A Survey”, The Open Applied 
Mathematics Journal, pp. 31-58, 2008. 

[7] K.S.Narendra, and K.Parthasarathy: "Identification and Control of 
Dynamical Systems Using Neural Networks", IEEE Transactions on 
Neural Networks, vol. 1, no. 1, pp. 4-27, March 1990. 

[8] M.Mohammadzaheri, L.Chen, and S.Grainger, ”A critical review of the 
most popular types of neuro control”, Asian Journal of Control, vol. 14, 
no. 1, pp. 1-11, January 2012. 

[9] J.Igic, M.Bozic, and P.Maric, “Neuro-Adaptive Control based on 
Internal Model”, Proc. XLVI ETRAN, Conference vol. 1, pp. 161-164, 
Banja Vrucica, Teslic, June, 2002. 

[10] V.G.Krishnapura, and A.Jutan, “A neural adaptive controller”, Chemical 
Engineering Science 55, pp. 3803-3812, 2000. 

[11] H.Deng, and H.-X.Li, “A Novel Neural Approximate Inverse Control 
for Unknown Nonlinear Discrete Dynamical Systems”, IEEE 
Transactions on systems, man, and cybernetics—Part B: Cybernetics, 
vol. 35, no. 1, pp. 553-567, February, 2005. 

[12] H.-X.Li, and H.Deng, “An Approximate Internal Model-Based Neural 
Control for Unknown Nonlinear Discrete Processes,” IEEE Transactions 
on neural networks, vol. 17, no. 3, pp. 659-670, May, 2006. 

[13] Y.-N.Wang, and X-F. Yuan, “SVM Approximate-based Internal Model 
Control Strategy”, Acta Automatica Sinica, vol. 34, no. 2, pp. 172-179, 
February, 2008. 

[14] J.B.D.Cabrera and K.S.Narendra, “Issues in the application of neural 
networks for tracking based on inverse control”, IEEE Transactions on. 
Automatic Control, vol. 44, no. 11, pp. 2007–2027, November 1999. 

[15] L.Ljung, System Identification-Theory for the User, 2nd Edition., A 
Simon & Schuster Company, N.J., Prentice-Hall PTR, 1999. 

[16] J.Igic, M.Bozic, P.Maric, and I.Krcmar, “Adaptive Control based on 
Internal Model”, Proc. XLV ETRAN, Conference vol. 1, pp. 209-212, 
Bukovicka Banja, June, 2001. 

[17] M.Bozic, J.Igic, and I.Radojicic, “Robust Digital Control for Processes 
with Dead-Times”, Conference Proc. Information Technology IT99., pp. 
355-358, Zabljak, March, 1999. 

[18] M.Bozic, and J.Igic, “Robust Digital Control of Typical Industrial 
Processes”, Proc. XLIII ETRAN, Conference vol. 1, pp. 224-227, 
Zlatibor, September, 1999. 

[19] M.Bozic, J.Igic, and I.Krcmar, “The Speed Servosystem Realization 
with IMC Controller Implemented by PC”, Proc. XLIV ETRAN, 
Conference vol. 1, pp. 354-357, Sokobanja, June, 2000. 


