
INFOTEH-JAHORINA Vol. 12, March 2013.

 - 987 -

Permuted Sequence Implemented as an Upgraded
Petri Net for Solving N-Queens Problem

Perica S. Štrbac, Jovo Arežina
Faculty of Computer Science

Belgrade, Serbia
strbac68@gmail.com jovo.arezina@gmail.com

Zoran Banjac
School of Electrical Engineering and Computer Science

Belgrade, Serbia
zoran.banjac@viser.edu.rs

Abstract — The objective of this paper is modeling, simulation
and analysis of Upgraded Petri Net (UPN) model which
implements permuted sequence for solving N-queens problem.
The UPN was developed for simulation and analysis of processes,
particularly at the register transfer level. Original software for
modeling and simulations of UPN, PeM (Petri Net Manager), is
developed and used for all models described in this paper. This
software supports: UPN formal theory, graphical modeling,
simulation and analysis of an UPN model. This paper includes
UPN theory, the UPN models of high level representation for
solving N-queens problem and model which includes three sub
models based on alternating position crossover (AP), order based
crossover (OX2) and partially mapped crossover (PMX),
respectively, their simulation and analysis. The executions of
UPN are based on parallel firing of a group of transitions. The
suitability of UPN for modeling of the systems based on
permuted sequence is examined and established.

Key words — Permuted Sequence; Upgraded Petri Net; Genetic
Algorithm; AP; OX2; PMX; Modeling; Simulation; Analysis;

I. INTRODUCTION
Upgraded Petri nets are a formal mathematical apparatus

which enables modeling, simulation and process analysis [1].
They enable interactive monitoring of process operations and
its gradual improvement from the initial phase, all the way to
the final version.

 The hierarchical structure of an UPN gives wide
possibilities for abstraction. This feature of the UPN provides
the model implementation consisting at the same time of
elaborate pieces essential for the analysis at a certain level,
and also of some general pieces whose details are irrelevant
for the analysis at the given level of abstraction [2]. The UPN
is an extension of an ordinary Petri Net and a formal modeling
tool appropriate for simulation and analysis of processes,
particularly at the register transfer level (RTL). Unlike other
classes of Petri Net, the UPN can be able to generate
numerical results through its model execution at RTL level.

 This paper presents the usage of UPN in the example
of modeling, simulation and analysis of a genetic algorithm
[3] which solves n-queen problem where chromosomes coded
as permuted sequence. A chromosome is determined as a
permuted sequence where one element in the sequence refers
to the column position and its index refers to the appropriate

row position of one queen on the chessboard. Main goal is to
place N-queens on N×N chess board in such a way that no one
attacks each other.

The algorithm finds one or more solutions using basic
genetic algorithm principles. Initial population of random
queen positions is generated.

The chromosomes in the population will be evaluated by
fitness function, recombined and mutated until the problem is
solved.

The fitness function is determined by the smallest number
of conflicts attack between queens on the chessboard.

The recombination is done by using: alternating position
crossover (AP), order based crossover (OX2) and partially
mapped crossover (PMX) between two permuted sequences to
generate two different offspring.

The mutation is done by exchanging positions of two
values in permuted sequence.

During a life cycle the population is sorted by fitness,
some of the best evaluated chromosomes go to the next
generation as elitism and the rest population will be populated
by recombination and mutation of the rest chromosomes.

As an example, the first UPN model implements the high
level representation of the solution and the second UPN model
implements the recombination process.

For given input parameters determined by: initial marking,
multiplicity of arcs, transition function, transition firing level,
place attributes, and UPN conflict solving the model through
its execution can check the recombination process [1].

II. AN UPN FORMAL THEORY
Upgraded Petri nets formal theory is based on functions

[1]. Upgraded Petri net is a 9-tuple:

C = (P, T, F, B,μ,θ, TF, TFL, PAF)
where:
P={p1, p2, p3, ..., pn}, n>0
- a finite nonempty set of places pi
T={t1, t2, t3 ,...,tm}, m>0
- a finite nonempty set of transitions tj

 - 988 -

F: T×P→N0 - Input Function;
B: T×P→ N0 - Output Function;
μ: P→ N0 - Marking Function:
θ: T×Δ→λ - Timing Function;
TF: T→Α - Transition Function;
TFL: T→ N0 - Transition Firing Level;
PAF: P→(x, y) - Place Attributes Function;

The input function assigns a non-negative number to an
ordered pair (ti,pj)∈ T× P. The assigned non-negative number
defines how many times the place pi is input as compared to
the transition ti. N0 represents the set of non-negative integers.
The set of places which are input as compared to the transition
tj is presented as follows *tj={ pi∈P, F(tj, pi)>0}. For the
presentation of the place pi∈*tj which have the standard input
compared to the tj, the sign *tj

S will be used, and sign FS(tj, pi)
will be used for such input function. For the places pi∈*tj with
inhibitor input in relation to the tj transition, the sign *tj

I will
be used and sign FI(tj, pi) for the input function.

The output function gives a non-negative integer to the
ordered pair (ti,pj). The assigned non-negative integer shows
how many times the place pi is input in relation to the ti
transition. The set of places which are input in relation to the tj

transition is presented as follows tj*={ pi∈P, B(tj, pi)>0}.

The marking function assigns a non-negative integer to the
pi place. The marking function can be defined as n-dimension
vector (marking): μ=(μ1,μ2,...,μn), where n=|P|. Instead of
sign μi it can be used the sign μ(pi).

The timing function θ assigns the probability λij∈ [0,1] to
an ordered pair (ti, j) ∈ T× N0, i.e., λij =θ(ti, j).

The transition function gives an operation αj∈Α to the tj
transition. Sign Α is the set of operations which can be
assigned to the transition.

The firing level function of the transition gives a non-
negative integer to the transition tj. If this number not equals
zero, it shows the number of pi∈*tj places takes part in the
transition firing, and if this number equals zero, then all the
places pi∈*tj affect the tj transition firing.

Place attributes function assigns an ordered pair (x,y) to the
place pi. The x component is a real number called x attribute,
and y is a non-negative integer called y attribute (i.e. x∈R,
y∈N0). Over the x attribute belonging to the pi∈*tj places, the
αj operation assigned to the tj transition executes where the
order of operands in the operation αj is defined by the y
attributes which belong to the pi place in accordance to TFL
function take part in the transition firing.

An Operation Assigned to a Transition: Function TF
assigns to a transition tj one operation. This operation can be:
arithmetical operation, logical operation or file operation [1].
Inside the suite PeM a file which is a target of file operation
function has an *.mem extension. This *.mem file is a text file
and it is used for simulation of computer system memory. One

line inside the *.mem file refers to context of one memory
location of computer system that we are modeling.

An arithmetical operation αj∈Α, which is assigned to the
transition tj∈T, uses attributes x which belong to the places
pi∈*tj as operands of that operation. A result of an arithmetical
operation αj∈Α will be placed into the attributes x which
belong to the places pi∈tj*. The order of an operand (i.e. order
of attributes x which belong to the places pi∈*tj) in an
arithmetical operation αj∈Α is defined by attributes y which
belong to the places pi∈*tj.

A logical operation αj∈Α which is assigned to the
transition tj∈T, uses attributes x which belong to the places
pi∈*tj as operands of that operation. If a result of the logical
operation αj∈Α is logical false the transition tj∈T is disabled
and will stay in that state until the result of this logical
operation αj∈Α becomes logical true. The order of an operand
(i.e. order of attributes x which belong to the places pi∈*tj) in
a logical operation αj∈Α is defined by attributes y which
belong to the places pi∈*tj.

A file operation αj∈Α which is assigned to the transition
tj∈T performs over the context of a file which extension is
equal to *.mem. A File Operation αj∈Α addresses context of a
*.mem by using attribute x which belongs to the places pi∈*tj.
A result of this operation αj∈Α changes the value of attributes
x which belong to the places pi∈tj*. The result also can change
attributes y which belong to the places pi∈tj*, or can change
context of addressed line into the *.mem file.

An UPN Graph: Upgraded Petri Net is represented via
formal mathematical apparatus or graphically. An UPN is
represented by bipartite multigraph as is in Petri-net.

An Upgraded Petri Net executing represents change of
system state from the current state to the next state. This
migration from one state to the other one is triggered by firing
of the transitions. By UPN executing: marking vector can be
changed, contents of *.mem file can be changed, and attributes
which belong to the places pi∈tj* of enabled transition tj can
be changed.

A transition tj∈T can be enabled in Upgraded Petri Net:
 C = (P, T, F, B,μ, θ, TF, TFL, PAF) if the next 3 conditions
are satisfied:

1° If the timing function λjk = θ(tj, k)>0; (1)
2° If TFL(tj)>0 then (#pi(S)) + (#pi(I)) = TFL(tj), (2)

 and if TFL(tj)=0 then (#pi(S)) + (#pi(I)) = ⏐*tj⏐,
 where
 #pi(S) is a number of places pi∈*tS

j such that
 μ(pi) ≥ FS(tj , pi), and
 #pi(I) represents a number of places pi∈*tI

j for which
 μ(pi) = 0;

3° If a logical operation αj ∈ A assigned to the (3)
 transition tj , then the result of the operation
 αj must be equal to true.

 - 989 -

A marking vector μ will be changed to new marking vector
μ' by firing of transitions tj , where:

μ'(pi) = μ(pi) - F(tj, pi) + B(tj,pi) , for places pi∈*tj
S

μ'(pk) = μ(pk) + B(tj,pi) , for places pk∈*tj
I

By firing of the transition tj an arithmetic operation is
executed or a file operation is executed with respect to the
operation that is assigned to tj by function TF(tj).

A logical operation which assigned to the transition tj by
function TF(tj) will be executed if conditions (1) and (2)
related to tj are equal to true.

A conflict in Upgraded Petri Net influences UPN
executing. A conflict in UPN is the same as the conflict in
Petri-net.

An UPN reachability tree graphically represents all
possible marking vectors which can occurs during an UPN
execution for given initial marking. Reachability tree shows
all states which model can reach from the initial state. The
UPN reachability tree is the same as the Petri Net reachability
tree.

An UPN executing refers to a concurrent firing of the
enabled. An UPN execution generates an UPN flammability
tree. This tree is such tree where a node of the tree is a set of
the transitions which are enabled at the same time. If there is
the same node as the current node in the flammability tree then
generating of the flammability tree will be stopped. There are
four types of nodes in a flammability tree: root node, double
node, dead node, and inner node.

III. UPN MODELS FOR SOLVING N-QUEENS PROBLEM
In this section two UPN models are described. The first

one refers to high level representation of the genetic algorithm
which has used for solving N-queens problem and the second
one refers to recombination of chromosomes implemented as
permuted sequence inside N-queens solution. [3], [4], [5], [6],
[7], [8].

The first UPN model of a high level representation of the
genetic algorithm is shown in Error! Reference source not
found.. Initial marking is μ(p-8) = 1. By firing of enabled t-8
transition, which models process of chromosome encoding, a
new marking becomes μ(p-1) = 1, μ(p-8) = 0. This state of the
model refers to ready state for generating the first population.
By firing of transition t-1, a new marking becomes μ(p-2) = 1,
μ(p-1) = 0 and transition t-2 becomes enabled. Further, by firing
of transition t-2, which models calculation of fitness for
chromosomes in the population, a new marking is μ(p-3) = 1,
μ(p-2) = 0 and transition t-3 becomes enabled. Now, firing of
this transition models selection process with respect to fitness.
Transition t-4 becomes enabled, and marking is μ(p-4) = 1, μ(p-3)

= 0. The next event is process of the recombination which was
modeled by firing of transition t-4. At this point transition t-5
is enabled and marking is μ(p-5) = 1, μ(p-4) = 0. By firing of
enabled t-5 transition, which models process of mutation the

population, a new marking become μ(p-6) = 1, μ(p-5) = 0 and
transitions t-2 and t-7 become enabled. This conflict situation
means that there are two ways. The first one is firing of
transition t-6, which means that main goal is not reached, and
the second is firing of transition t-7 which means that main
goal reached. If the first one case occurs the fitness evaluation
over the new population starts, and the iteration of genetic
algorithm started. In the opposite, if the transition t-7 fired
there is at least one solution in the population (μ(p-7) = 1).
Finally, the results will be decoded and converted into graphic
representation of solutions.

Figure 1. High level representation UPN model for solving N-queens

problem

 - 990 -

Figure 2. UPN model of recombination of encoded sequence (part 1)

The second model refers to the recombination of two
encoded sequences. This model contents of the three sub
models based on alternating position crossover (AP), order
based crossover (OX2) and partially mapped crossover
(PMX), respectively.

The first part of the second model is shown in Error!
Reference source not found.. Initial marking is μ(p-3) = 1,
μ(p-2) = 4. The first value enables transition t-4, so UPN can
starts. The second value represents how many chromosomes
are in the selected population set. By firing of transition t-4, a
new marking becomes μ(p-1) = 1, μ(p-5) = 2 (because of
multiplicity of output arcs B(t-4,p-5)=2), μ(p-3) = 1, μ(p-2) =
4 and transitions t-1, t-2, t-3, t-5 and t-6 become enabled.
Transition t-5 get the first parent from selected population,
while transition t-6 get the second parent. These two
transitions will be fired in parallel. On the other side, only one
transition of the parallel set of transitions {t-1, t-2, t-3} will be
fired, because of μ(p-1) = 1and F(t-1, p-1) = F(t-2, p-1) =
F(t-3, p-1) = 1. Each of the places p-20, p-21 and p-22 have
inhibitor arc to the appropriate transitions t-1, t-2 and t-3,
respectively. On this way we can enable or disable any
combination of crossover (AP, OX2 and PMX) by setting
appropriate marking i.e. μ(p-20) = 1disables AP crossover. In
the model only one of three algorithms will be used per
iteration. Every single algorithm has probability of 1/3 to be
used per iteration.

By firing of transitions {t-5, t-6, t-1} places p-4 and p-6
take the first and second parent from the selected population,
respectively, and now marking μ(p-2) = 2, μ(p-1) = 0, μ(p-16)
= μ(p-17) = 1, On the other side marking μ(p-7) = 2 and set of
transitions {t-7, t-8, t-11, t-12} is enabled and increment of the
marking μ(p-9) = 1 occurs. The last marking represents
statistic data how many times the AP crossover was used per
iteration. Places p-16 and p-17 prepare to save selected parents
into the new population.

By firing of transitions {t-7, t-8} places p-11 and p-12
have copies of the first parent while places p-13 and p-14 have
copies of the second parent, on the other side by firing of
transitions {t-11, t-12} selected parents is added to the new
population (these transitions are shown on Fig. 3). At this
moment the marking μ(p-7) = μ(p-4) = μ(p-6) = 0 and μ(p-11)
= μ(p-12) = μ(p-13) = μ(p-14) = 1, μ(p-16) = μ(p-17) = 0,
μ(p-18) = 2 (the new population grows up by 2 parents)
μ(p-19) = 2. The transitions {t-9, t-10} are enabled. These
transitions have transition function APos which creates
offspring by using alternating position crossover. This TF has
transition firing level equal to 3. The inputs into this function
are as follows: length of the permuted sequence (implemented
as place p-10 which has an attribute x=N and an attribute
y=1), first permuted sequence (implemented as place which
has an attribute x equal to address of the first permuted
sequence and an attribute y=2) and the second permuted
sequence (implemented as place which has an attribute x equal
to address of the second permuted sequence and an attribute
y=3).

By firing of transitions {t-9, t-10} a new marking becomes
μ(p-11) = μ(p-12) = μ(p-13) = μ(p-14) = 0, μ(p-18) = μ(p-19)
= 2 and μ(p-16) = μ(p-17) = 1. Now both offspring are placed
into the places p-16 and p-17, respectively.

 - 991 -

Figure 3. UPN model of recombination of encoded sequence (part 3)

Figure 4. UPN model of recombination of encoded sequence (part 2)

By firing of transitions {t-11, t-12} both offspring are
added to the new population. At this moment a new marking
becomes μ(p-18) = 4, μ(p-19) = 4 and μ(p-16) = μ(p-17) = 0.
The transition t-13 is enabled. This means that there are
parents in the selected population and new iteration of mating
will start. By firing of the transition t-13 a new marking
becomes μ(p-18) = 4, μ(p-19) = 0, μ(p-3) = 1 (start new
iteration), and μ(p-2) = μ(p-2) -1+1 (preserve marking into the
model).

Now the next iteration starts. In the second iteration let the
OX2 is chosen (see Fig. 4). In that case after firing the set of
transitions {t-2, t-5, t-6} two selected parents will be copied
into places p-16 and p-17 and there is no chromosomes into
the selected population, and statistic data for OX2 (place p-15)

will be updated. By firing of the set of transitions {t-14, t-15,
t-11, t12} selected parents will be copied into the places p-23,
p-24 for the first parent and into the places p-25, p-26 for the
second parent and also parents from places p-16 and p-17 will
be added to the new population. .

The transitions t-16 and t-17 have transition function
OX2os which creates offspring by using order based
crossover. This TF has transition firing level equal to 4. The
inputs into this function are as follows: length of the permuted
sequence (implemented as place p-10 which has an attribute
x=N and an attribute y=1), number of crossing points
(implemented as place p-27 which has an attribute x=2 and an
attribute y=2), first permuted sequence (implemented as place
which has an attribute x equal to address of the first permuted
sequence and an attribute y=3) and the second permuted
sequence (implemented as place which has an attribute x equal
to address of the second permuted sequence and an attribute
y=4). After firing of transitions {t-16, t-17} both offspring will
be placed into the places p-16 and p-17 and after firing of
transitions {t-11, t-12} new population has 8 chromosomes
and model reached death node. That means that there is no
enabled transition in the net i.e. in this case selected
population is empty.

If in the second iteration was selected partially mapped
crossover the situation would be similar as in the case of OX2.
Equivalent places are p-10, p-15, p-8, p-23, p-24, p-25, p-26
as p-10, p-34, p-28, p-29, p-30, p31 and p-32, respectively.
Equivalent transitions are t-2, t-14, t-15, t-16, t-17 as t-3, t-18,
t-19, t20 and t-21, respectively. The transitions t-20 and t-21
have transition function PMXos which creates offspring by
using partially mapped crossover. This TF has transition firing
level equal to 4. The inputs into this function are as follows:
length of the permuted sequence (implemented as place p-10
which has an attribute x=N and an attribute y=1), number of
crossing points (implemented as place p-27 which has an
attribute x=2 and an attribute y=2), first permuted sequence
(implemented as place which has an attribute x equal to
address of the first permuted sequence and an attribute y=3)
and the second permuted sequence (implemented as place
which has an attribute x equal to address of the second
permuted sequence and an attribute y=4).

IV. AN UPN MODEL EXECUTION
By executing the UPN model for given initial marking

(shown on Fig. 1) the following sequence of transitions firing
will happen: {t-8} {t-1} {t-2} {t-3} {t-4} {t-5} {t-
6, t-7}.

By executing the UPN model for given initial marking
shown on UPN model of recombination of encoded sequence
(Fig. 2, Fig. 3 and Fig. 4) the next sequence of transitions
firing will happen: the first {t-4} then one of the three sets of
the transitions {t-1, t-5, t-6}, {t-2, t-5, t-6}, {t-3, t-5, t-6} will
fired.

After the sequence {t-1, t-5, t-6} the next sequence will
occur: {t-7, t-8, t-11, t-12} {t-9, t-10} {t-11, t-12}

 - 992 -

{t-13} {t-4}. This sequence refers to alternating position
crossover.

When the sequence {t-2, t-5, t-6} occurred the next
sequence is: {t-14, t-15, t-11, t-12} {t-16, t-17} {t-11,
t-2} {t-13} {t-4}. This sequence refers to order based
crossover.

After the sequence {t-3, t-5, t-6} the next sequence will
occur: {t-18, t-19, t-11, t-12} {t-20, t-21} {t-11, t-12}
{t-13} {t-4}. This sequence refers to partially mapped
crossover.

When UPN model reached state that there is no parents
into the selected population (μ(p-2) = 0) the transition t-13
will stay disabled after execution of the preceding sequences
(up to {t-11, t-12}). This represents the dead node which in
shown model refers to end of process of generating the new
population.

V. THE UPN MODEL ANALYSIS
The UPN models which are presented in the paper show

great potential for parallel operation through their parallel
firing of transitions. This has observed and implemented in
software program using C++ language.

The results given by the UPN models are expected and can
be checked by executing the program which refers to the
models.

Figure 5. Total conflicts per generation

The changing of total conflicts in all chromosomes in the
population per generation is shown on Fig. 5. These results
have obtained with the parameters as follows: the population
includes 1000 chromosomes, mutation factor is equal to 0.8,
maximum number of generation is set to 1000 with chess
board size is equal to 12×12 and with randomly choosing one
of three crossover algorithm per generation. With respect to
the second UPN model (see Fig. 2, Fig. 3. and Fig. 4) it is
possible to set up which algorithm will be selected for the

current generation. It can be selected one, two or all three
algorithms which competing to be used over the current
generation. All three crossover algorithms were used
(alternating position crossover, order based crossover and
partially mapped crossover) to produced data which shown on
Fig. 5.

VI. CONCLUSION
Two Upgraded Petri net models are presented. The first

one refers to high level of presentation of genetic algorithm
which solve N-queens problem. The second model refers to
the recombination of two encoded sequences which includes
three sub models. The sub models are refer to: alternating
position crossover (AP), order based crossover (OX2) and
partially mapped crossover (PMX). Given UPN models can
generate results for given input data and initial marking.
Suitability of given UPN model was checked by execution of
the model and the results generated dynamically during this
execution. UPN can be used for creating models based on
genetic algorithms due to their parallel nature and the need for
random inputs. UPN can be able to generate numerical results
through its model execution at RTL level. This level is
suitable for analyzing hardware implementation of the model
and also for checking given results. Original software for
modeling and simulations of Upgraded Petri Nets, PeM (Petri
Net Manager), is developed and used for all models described
in this paper.

ACKNOWLEDGEMENTS
This research was supported by the Serbian Ministry of
Education and Science, Republic of Serbia, Project no. III
44006

REFERENCES
[1] Perica Strbac, Milan Tuba, “An Upgraded Petri Net Model, Simulation

and Analysis of An 8x8 Sub-Image for JPEG Image Compression,”
Recent Advances in Applied Informatics and Communications, Recent
Advances in Computer Engineering, WSEAS Press, ISBN 978-960-474-
107-6, Moscow, Russia, pp. 167-172, August 2009.

[2] J. L. Peterson, “Petri Net Theory and Modeling of Systems”, Englewood
Cliffs , Prentice Hall, New York 1981.

[3] K. F. Man, K. S. Tang and S. Kwong, “Genetic Algorithms: Concepts
and Applications,” IEEE Transactions on Industrial Electronics, Vol. 43,
No. 5, pp. 519-534, October 1996.

[4] Chang Wook Ahn and R. S. Ramakrishna, “Elitism-Based Compact
Genetic Algorithms,” IEEE Transactions on Evolutionary Computation,
Vol. 7, No. 4, pp. 367-385, August 2003.

[5] D. Dumitrescu, B. Lazzerini, L. C. Jain, and A. Dumitrescu,
“Evolutionary Computation,” Boca Raton, FL: CRC Press, 2000.

[6] S. Yang, “Genetic Algorithms with Elitism-based Immigrants for
Changing Optimization Problems,” Lecture Notes in Computer Science,
Volume 4448/2007, pp. 627-636, DOI: 10.1007/978-3-540-71805-5_69,
2007.

[7] W. Zhong, J. Liu, and L. Jiao, “Evolutionary Agent for n-Queen
Problems”, Lecture Notes in Computer Science, 2005, Volume
3612/2005, pp. 366-373, 2005.

[8] Mishra K.K., Tiwari S., Kumar A., Misra A.K., “An approach for
mutation testing using elitist genetic algorithm,” International
Conference on Computer Science and Information Technology 3rd IEEE
(ICCSIT), pp. 426-429, 2010.

