
INFOTEH-JAHORINA Vol. 12, March 2013.

 - 772 -

Pico Blaze praxis for solving mathematical functions

Mladen Milushev
 Faculty of Mechanical Engineering

TU-Sofia
Sofia, Bulgaria

 mcm@tu-sofia.bg

Filip F. Filipov
Faculty of Computer Systems and Control

TU-Sofia
Sofia, Bulgaria

pilif.pi.lif@gmail.com

Abstract—This paper presents an example use of Pico Blaze, a
famous soft-core processor in the education praxis. The
mathematical function multiplication is used as a demonstration
of combining software and hardware in FPGA.

Keywords- Pico Blaze; Multiplication; FPGA;

I. INTRODUCTION
Pico Blaze is a compact 8-bit processor soft-core for Xlinx

FPGA devices. It is provided as a HDL description and can be
synthesized along with other logic. Since he is not intended to
be a microcontroller

 Figure 1. Pico Blaze architecture

Figure 1. Pico Blaze architecture

(object oriented) he is compact and flexible and can be used
for simple data processing and control or non-time-critical I/O
operations. The realization of a multiplication is a good project
for exploring these functionalities. FPGAs are the only
possibility to implement existing variations of processor cores
and to expand them according to the needed functionality.

II. PICO BLAZE
The main data flow is shown in Fig.1[1] featuring the

following characteristics:

• 8 –bit ALU with carry and zero flags

• 64-byte scratch memory

• 256 input and 256 output ports achieved through
multiplexing

• 2 clock cycles per instruction

The scratch memory is simply data RAM and is considered
to be a reservoir for additional data. Although there is no direct
path between the data RAM and the ALU.

For the design process Pico Blaze is organized as two HDL
modules shown in Fig.2. KCPSM3 stands for constant(K)
coded programmable state machine and is the original name of
Pico Blaze. The other module is for the instruction memory –
usually the assembly code is configured as ROM in HDL. The

signal names on the left side of each module are input and
on the right output.

One advantage of using soft-core processor is that the
designer can alter his periphery and be familiar with one
processor and not to examine the required functionality and
based on it to select the proper processor with adequate I/O
interface. This way time-critical tasks and many other
functionality can be implemented in the FPGA fabric (i.e.
hardware) and trough the implemented soft-core all remaining
low-speed functions (i.e. software).

The basic development flow with Pico Blaze is shown in
Fig. 3 and has the following steps:

• Divide the functionality in software and hardware

• Write the assembly program

 - 773 -

Figure 2. HDL representation of Pico Blaze

Figure 3. Development flow with Pico Blaze

• Generate an Instruction ROM in a form of a HDL file

• Perform computer simulations on the assembly
program

• Write HDL code for the hardware part

• Combine the HDL code with Pico Blaze and
instruction ROM

• Perform HDL simulations for the entire system

• Synthesize, implement and then program the FPGA
chip

• After the system is synthesized the developer can still
change the assembler code.

III. FUNCTION USING PICO BLAZE
Since Pico Blaze does not contain a hardware multiplier the

developer has two possibilities to choose from:

• To create a HDL multiplier (hardware) and attach it to
Pico Blaze as periphery

• To use a algorithm (software) for multiplication such
as shift-and-add

A. HDL multiplier
The multiplication will be only one instruction (i.e. two

clock cycles) in the program for the Pico Blaze. The
connection with the peripheral requires two output ports and
buffers for the two operands and two additional input ports for
the 16-bit product.

B. Shift-and-add multiplication
The software multiplication requires a subprogram which in

her worst-case scenario would require 60 instructions. The
shift-and-add method adds the multiplicand A to itself B times,
where B denotes the multiplier. This method is similar to the
multiplication performed by paper and pencil, which is to take
the digit of the multiplier one at a time from right to left,
multiplying the multiplicand by a single digit of the multiplier
and placing the intermediate product in the appropriate position
to the left. . The shift-and-add method is shown in Fig. 4 [2].
In each iteration the multiplicand B is shifted one position to
the left and the multiplier Q one position to the right. If the
LSB of the multiplier is 1 then the multiplicand is added to the
product A. Table 1 shows the multiplication of 4 (100) and 4
(100) = 10 000 .

TABLE I. MULTIPLICATION EXAMPLE

Step A Q B Operation
0 0000 0000 100 0000 0100 Start
1 0000 0000

0000 0000
100
010

0000 1000
0000 1000

Shift left B
Shift right Q

2 0000 0000
0000 0000

010
001

0001 0000
0001 0000

Shift left B
Shift right Q

3 0001 0000
0001 0000
0001 0000

001
001
000 - end

0001 0000
0010 0000
0010 0000

Add B to A
Shift left B
Shift right Q

Multiplication of 4 x 4

Figure 4. Shift-and-add multiplication

 - 774 -

IV. PROJECT DETAIL
The idea of the project is to show how Pico blaze could get

two numbers as inputs, perform some function with them and
show the result somewhere. For this purpose the following will
be used:

• Switch – he will provide the values of the two numbers
and select the content of the LED display

• Pushbutton 1 - to load the first number or alternatively
the second when pressed

• Pushbutton 2 – to clear the data RAM and relevant
registers

• Seven-segment LED – to display the selected 17-bit
value in four hexadecimal digits

• UART interface – so that information can be entered
and displayed in Windows HyperTerminal which is an
alternative to switches and LEDs.

Figure 5. Two button input

Figure 6. 7Segment output

Figure 7. UART and Pico Blaze

V. INPUT INTERFACE
The similarity between the input and output ports of Pico

Blaze is that they all are set as port numbers by the output port
port_id . So in order to use these ports multiplexing is needed,
which can be (like the multiplication) software based or as
hardware in form of HDL code. In the project the second
alternative is used.

The input interface is shown in Fig. 5. The module
debounce is used to remove any mechanical glitches when a
button is pressed and actually is a simpler filter. After the
signal is filtered the flag FF module keeps the button-pressed-
event asserted until it is retrieved by the Pico Blaze input
instruction, which sets the right input port number and clears
the event.

 - 775 -

VI. LED OUTPUT INTERFACE
It is shown in Fig. 6. There is again decoding of port_id and

multiplexing but this time it is time multiplexed, because the
four segments share the same input pins. The multiplexing
shields the timing and allows them to appear as four
independent seven-segment-LEDs. Again it can be software or
hardware implemented. We chose to do it hardware in form of
VHDL code which is the disp_mux in the figure.

The refresh rate of the segments has to be fast enough to
fool our eyes but should be slow enough so that the LEDs can
be turned on and off completely. The clock rate on the used
prototype board is 50MHz so a 16 bit counter is used to for a
refresh rate of 800Hz for each segment.

VII. UART INTERFACE
The interface is shown in Fig. 7. It is written as VHDL

code. Since the UART itself has input and output FIFO buffers
only decoding and multiplexing for the Pico Blaze I/O ports is
needed. The UART signals for FIFO empty (rx_empty) or
FIFO full (tx_full) are grouped together like the pushbuttons in
the input interface since they are alternative to each other and
in this way only one Pico Blaze inport is used.

VIII. RESULTS
For the RS232 connection the Hyper Terminal has to have

bits per second set to 19200 and a tick on echo typed
Characters. This way the UART module can generate an SQ
prompt shown in Fig.8. . The user can enter four characters:

• a and b for the two numbers. When these characters are
pressed the value of the 8-bit switch is read.

• c is abbreviation for clear. When pressed the scratch
RAM is cleared

• d is abbreviation for dump. When pressed scratch
RAM is represented on the screen. In this way the user
can observe all steps of the function calculation.

The switch on the Digilent Basys prototype board provides
not only values for a and b but can also be used to select the
content of the segments by changing the values of switches 0 to
2. All combinations and display values are shown in table 2.
The board is shown in Fig.9.

TABLE II. COMBINATION OF SWICHES

Changing the displayed results

Figure 8. Communication and results displayed in Hyper Terminal

IX. CONCLUSION
In this paper the realization of a multiplication function

combined with a soft-core is explored. The advantages of using
this core were shown in case of a realization on FPGA, since
Pico Blaze is platform dependent on Xlinx products.

REFERENCES
[1] XLINX, „PicoBlaze 8-bit Embedded Microcontroller User Guide “,

UG129 June 22, 2011
[2] Baruch, Z. F., Structure of Computer Systems (in English), U. T. PRES,

Cluj-Napoca,2002, ISBN 973-8335-44-2
[3] Pong P. Chu, „FPGA prototyping by VHDL examples“, Wiley, 2008

Figure 9. FPGA prototype board

Display
value

SW2 SW1 SW0

a 0 0 0

b 0 0 1

a2 0 1 0

b2 0 1 1

a2+b2 1 1 1

a2 + b2

aba2 b2

