
INFOTEH-JAHORINA Vol. 12, March 2013.

 - 731 -

Groundwork for Presentation Pattern Metamodels

Nina Turajlić, Marko Petrović, Milica Vučković, Ivana Dragović
Faculty of Organizational Sciences

University of Belgrade
Belgrade, Serbia

{niiv, mpetrovic, milica, pavlovici}@fon.rs

Abstract—A number of Presentation Patterns exist providing
common solutions for the design and implementation of the
presentation layer of a business application. The differences
among them stem from the manner in which the concerns,
associated with the functionality of the presentation layer, are
separated into components, as well as the interaction between
these components. By identifying the set of concepts comprising a
given Presentation Pattern the pattern's metamodel can be
defined. This paper presents an analysis of the most frequently
applied Presentation Patterns, with the intention of setting the
grounds for future automated development of the presentation
layer of a business application through the transformation of the
chosen pattern, defined as a Platform Independent Model, into
an implementation of that pattern on the chosen development
platform - a Platform Specific Model.

 Keywords-Pattern; Presentation Layer; Metamodel

I. INTRODUCTION
Patterns provide common solutions for the design and

implementation of business applications. In other words, they
enable the use of collective knowledge and experience for
solving certain classes of problems. On the other hand, the
Separation of Concerns principle states that an application
should be designed in a manner that results in the minimal
overlapping in the functionality of its components. The goal is
to design the application in such a way that each of its
components can be replaced without affecting the others. First
the principle is applied to the design of the application itself,
which is consequently, developed as a multi-tier application
comprised of a presentation layer, a business layer, a data
layer etc. Subsequently, the principle should be applied to
each of the layers. In object-oriented software development a
large number of patterns have been introduced e.g. design
patterns such as GRASP and Gang of Four (GoF) patterns,
standard software architectures (e.g. the well-known three -
tier architecture - a combination of the Model-View-Controller
MVC and Persistent Broker patterns), business patterns,
implementation patterns…, all of which have incorporated the
high cohesion and loose coupling principles into the solution
they provide. Coupling is the degree of dependency of one
element (class, component, subsystem, etc.) on other elements
of the system. Loose coupling enables better readability,
facilitates maintenance and increases the possibility of
component reuse and thus is one of the goals of OO software
design. Cohesion is primarily related to the functional
cohesion of an element and indicates how tightly related the
responsibilities of an element are. High cohesion basically
means that an element executes one or more sequentially
related functions. Low cohesion results in a tight coupling of
elements.

One of the main issues with patterns is their automation.
The usual informal descriptions of patterns have proven to be
effective at communicating design experience to developers,
but they lack the formality needed to support rigorous use of
design patterns. Precise specification of pattern solutions
enables the development of pattern-based development
techniques and supporting tools that can be used to (1)
systematically build solutions from pattern specifications, (2)
verify the presence of pattern solutions in designs, and (3)
systematically incorporate a pattern solution into a design [1].
This limitation poses a serious problem for automated
software development. The Model Driven Architecture [2]
defines an approach to IT system specification that separates
the specification of system functionality from the specification
of the implementation of that functionality for a specific
technology platform. The key elements of the MDA are
models. A model is defined as a representation of a part of the
structure and/or behavior of a system. The main goal of Model
Driven Development is to automate software development
through the successive application of model transformations,
starting from the model representing the specification of the
system and ending in a model representing the detailed
description of the physical realization, from which the
executable code can ultimately be generated. To this end, two
types of models are defined: Platform Independent Models
(PIM) and Platform Specific Models (PSM). The PIM provide
formal specifications of the structure and function of the
system that abstracts away technical details, while PSM is
expressed in terms of the specification model for the target
platform. How the functionality defined in a PIM is realized
depends on the chosen platform and is specified in a PSM,
which is derived from the PIM via some transformation.

Presentation Patterns (PP) provide common solutions for
problems inherent to the presentation layer and the main goal
of most PPs, in accordance with the Separation of Concerns
principle, is the clear separation of the code which renders the
user interface and accepts user interaction from the code
responsible for business logic and state management.

This paper presents a continuation of the work presented in
[3] in which a review of the most frequently cited patterns for
presentation layer design was given to facilitate the selection
of the best-suited pattern for a given problem. The differences
among the patterns are due to different responsibilities being
assigned to different components as well as the various means
of interaction between these components.

The intention of this paper is to identify and clarify the set
of concepts comprising different Presentation Patterns in order
to enable the defining of their metamodels describing both the
structure and behavior of the corresponding PPs. In this way a

 - 732 -

vocabulary (a set of concepts including their syntax and
semantics) would be defined which could be used in software
design for creating the appropriate PIM. Subsequently, the
development could be automated by transforming a PIM of a
chosen PP to a PSM, an actual implementation of the Pattern
for a chosen platform.

The paper is structured as follows: In Section II a selection
of Presentation Patterns will be presented. In Section III, a
comparative analysis of the selected patterns will be given. In
addition to conclusions, in Section IV further steps will be
proposed towards the automated generation of the presentation
layer for different platforms.

II. PRESENTATION PATTERNS
The presentation layer typically obtains the necessary

domain data and presents it in a user interface (the user
interface is comprised of controls which display the data). The
user can then view and change the data. Once the user changes
the data, these changes are processed and then forwarded
through the application to the data storage and can, in turn,
bring about the modification of the user interface controls.

The first idea that comes to mind is to tie the data sources
with the user interface (UI) to minimize coding and enhance
the performance of the application. This would result with the
entire presentation logic, controlling the outlined process,
being located in the user interface. However, this approach
entails certain problems, which were given in detail in [3]. In
order to avoid or at least minimize these problems the basic
idea of the PPs is the clear separation of the concerns
associated with the functionality of the presentation layer into
components. The common goal is to separate the presentation
functionality from the component that encapsulates the
business and data manipulation logic (Model).

What is common to all of the considered PPs is that the
Model manages the behavior, state and data of the application
domain [4]. It encapsulates both data and business logic, i.e.
application logic for managing the data. Thus the Model is not
just a collection of data related to a certain concept, it also
encapsulates business logic (i.e. application logic for
managing the data) which implements the business rules
associated with that concept. The Model has no knowledge of
how it will be displayed or updated. The rationale behind the
extraction of the Model into a separate component is the
enabling of its reuse, thereby eliminating the duplication of
code. Moreover, the Model could then support different
presentations of the same data.

However, the further separation of the presentation
concerns into a component that encapsulates the UI and a
component that encapsulates the presentation logic (which is
independent of the actual implementation of the UI) can be
accomplished in several ways. According to [5] the main
concerns of the presentation layer are related to: State
(represents the current data picture of the UI), Logic
(represents the behavior associated with the presentation of the
data as well as the manipulation of that presentation) and
Synchronization (the data presented in the UI should
correspond to the data in the domain model. Therefore, part of

the presentation functionality is the synchronization of data
between its components and the domain model).

Correspondingly, PPs differ depending on which of these
concerns is associated with which component as well as the
different manners of interaction between these components.

 The PPs discussed in this paper are: Autonomous View,
Model View Controller, Model View Presenter (Supervising
Presenter and Passive View) and Presentation Model.

A. Autonomous View Pattern
 A View, in the most general sense, is a collection of

controls of a user interface, while it can, sometimes, also
include behavior.

 The Autonomous View Pattern is one of the most simple
presentation layer patterns. The presentation logic is directly
implemented in the View. The Autonomous Views manage
their states and communicate with each other when necessary.
Therefore, the state and logic are in the View. Even business
logic can be implemented in the View. While the advantage of
this pattern is its simplicity, the disadvantage is that it can
result in code that is difficult to read, maintain, build upon,
and especially test, since all of the functionalities are in the
same View. This is particularly true for complex Views.

All of the following PPs attempt to overcome the
limitations of this approach. They adopt the Humble View
Philosophy which stipulates that the user interface should be
as simple as possible and that to that end the logic associated
with the behavior of the user interface (i.e. the presentation
logic) should be relocated from the View into other non-visual
components. A Humble View should be the smallest possible
wrapper around the actual presentation code. The view is also
"passive," meaning that it doesn't really take any actions on its
own without some sort of stimulus from outside the view. The
view simply relays user input events to somewhere else with
little or no interpretation [6].

B. Model View Controller Pattern (MVC)
COMPONENTS: This pattern proposes that the functionality
of the user interface be split into: View and Controller. View is
responsible for the rendering the elements of the user interface
to display the data contained in the Model and should contain
as little logic as possible. Controller is responsible for reacting
to user actions, processing them and then forwarding the data
changes to the Model and/or View.

Figure 1. MVC Pattern

INTERACTION (Fig. 1): The View is responsible for the state
and the Controller is responsible for the logic. Together they
are responsible for interacting with the Model. Each View is
associated with only one Controller and vice versa. The

 - 733 -

Controller and View communicate via the Model and do not
reference each other (both reference the Model). On the other
hand, the Controller connects the Model and the View. The
Model may be updated by the View, the Controller or by other
components in the system. Once the state of the Model
changes it fires an event to notify the View and Controller.
Therefore the View and the Controller must observe the
Model. Once the user inputs the data, it is necessary to first
determine the appropriate Controller since a View-Controller
pair exists for every element in the user interface. Then the
request is passed to that Controller and it determines how to
process the request. Some user actions may require updates in
the Model, while other may require visual changes to the
View. If the View should be updated, the Controller notifies
the Model and since the View is observing the Model it will
update and render itself accordingly.

VARIATIONS: Passive Model and Active Model [7]. In the
Passive Model one Controller exclusively manipulates the
Model. The Controller updates the Model and then informs the
View to refresh. The Model is completely independent from
both the View and the Controller so the Model cannot inform
them when its state changes. In the Active Model the state of
the Model changes independently of the Controller, for
instance when other sources change the data and these changes
should be reflected in the View. Once the state of the Model
changes the Model notifies the View to refresh. This would,
however, make the Model dependent of the View, but it could
be avoided by employing the Observer pattern.

 The original MVC pattern is rarely used nowadays,
though variations of it have been developed in accordance
with new development platforms (e.g. the Front Controller
Pattern for web applications). Another variation of this pattern
is the following MVP pattern.

C. Model View Presenter Pattern (MVP)
COMPONENTS: This pattern proposes that the functionality
of the user interface be split into: View and Presenter. View
represents the structure of the controls in the user interface,
and is responsible for the presentation as well as for
maintaining its state. The View should contain as little logic as
possible, that is to say, it should not contain any behavior
concerning the reaction to the user actions. Presenter contains
the logic for reacting to user actions and is responsible for the
behavior.

INTERACTION: The View manages the controls of the user
interface. Consequent to a user action the View transfers
control to the Presenter. The Presenter will then decide how to
react to that action. There are several ways in which the View
can forward the user actions to the Presenter: (1) The View
can contain a reference to a Presenter and when the user
performs an action the View merely invokes a method of that
Presenter. This requires implementing additional methods in
the Presenter and results with the tight coupling of the View
and the Presenter, but on the flip side the code is easier to read
and follow (ideally the behavior of the View should be clear
just by looking at the Presenter); (2) The View raises events
when the user performs an action and the Presenter subscribes
to these events. The advantage is that it requires less coupling

between the View and the Presenter then the previous
approach.

 When the View requests the Presenter to process a user
action it doesn't provide the Presenter with any details, so the
Presenter must then ask the View and/or Model for the data
necessary to process that request.

 Furthermore, since the View reflects the state of the
Model, once the Model has been updated the View must be
update as well; therefore it is necessary to perform their
synchronization. The View and the Model can also
communicate in different ways:

• The View observes the Model for updates (the View is
aware of the Model) and/or

• The Presenter observes the Model for updates and
updates the View accordingly (the View is not aware
of the Model).

 The Presenter should actually contain a reference to an
interface of the View and not to an actual implementation of
the View. This would enable the reuse of the Presenter in that,
several Views (perhaps implemented using different
technologies) could then share the same Presenter. It would
also allow for the replacement of the actual View with a
"mock" implementation to facilitate testing. Hence, the
Presenter and the View should not be tightly coupled so that
one View may be completely replaced with a different one.
There may be several Views and Presenters for a single UI.
Regarding the manner in which the View and the Model can
communicate there are two variants of this pattern:
Supervising Presenter Pattern and Passive View Pattern. In the
Supervising Presenter Pattern the View directly communicates
with the Model. The View contains logic that can be described
declaratively, while the Presenter is involved in more complex
cases. In the Passive View Pattern the View is not aware of
the changes in the Model and the communication with the
Model is solely through the Presenter.

1) Supervising Presenter/Supervising Controller Pattern
CLARIFICATION: Since this pattern is a variant of the MVP
pattern we consider that Supervising Presenter is a more
appropriate name than Supervising Controller, though both
names can be found in the relevant literature.

COMPONENTS: This pattern proposes that the functionality
of the user interface be split into: View and Presenter. View
holds the state as well as simple mappings to the Model.
Therefore, controls in the user interface can be directly bound
to the domain Model. Presenter (often dubbed the Controller)
contains the presentation logic. It has two main
responsibilities: reacting to user actions and partial
synchronization between the View and Model. The Presenter
must observe its associated View and, if necessary, react by
updating the View and/or Model.

INTERACTION (Fig. 2): Once the Model is updated the View
should also be updated to reflect these changes and vice versa,
when the user interacts with the UI in the View the Model
should be updated accordingly. In terms of synchronization:

 - 734 -

• The View usually uses some sort of binding
technology for simple mappings, so the updates to the
Model can be automatically reflected in the user
interface without the intervention of the Presenter.
Therefore, the View is aware of the Model and
observes it. Conversely, as the user interacts with the
user interface updates can be made to the Model
without the intervention of the Presenter.

• More complex logic is left to the Presenter. The
Presenter should interpret the updates to the Model so
that in can update the View in a more complex fashion,
while in other cases the Presenter can update the Model
based on updates to the View.

Figure 2. Supervising Presentation Pattern

Figure 3. Passive View Pattern

Since the View forwards user actions to the Presenter it
must reference the Presenter. On the other hand, the Presenter
must reference the View so that it can update the View when
the Model is updated. Seeing how the Supervising Presenter is
dependent on the View that is assigned to it, while testing the
Presenter, an instance of the actual View is required, or an
object simulating the behavior of the View. Some of the
disadvantages of this pattern are that it is difficult to determine
what part of the presentation logic is the responsibility of the
Presenter, which may lead to inconsistencies in the project.
Furthermore, as the logic is contained in the Presenter it is still
tightly coupled to the View and must know its details of the
View.

2) Passive View Pattern
COMPONENTS: This pattern proposes that the functionality
of the user interface be split into: View and Presenter. View
only holds the state. Presenter contains the complete
presentation logic including the mapping. In addition to
reacting to user actions the Presenter is also responsible for the
complete synchronization between the View and the Model.
The Presenter must observe its associated View and, if
necessary, react by updating the View and/or Model.

INTERACTION (Fig. 3): The View is completely passive,
hence, there is no dependency between the View and the
Model. The Presenter contains a reference to the Model. Once

the Presenter obtains the data from the Model it directly
updates the properties of the View, thereby eliminating the
need for the View to have any knowledge of how to display
the object data correctly.

The advantages of this pattern are that testing can be
focused on the Presenter since the View is passive. In addition,
while binding gives the best results when dealing with
nonhierarchical objects, when there is a hierarchy or
aggregated data present, the Passive View provides better
control of the synchronization. On the other hand, the
disadvantages are that the Presenter could become as bulky as
the Autonomous View and there it also requires frequent View
Presenter communication.

D. Presentation Model Pattern (PM)
COMPONENTS: This pattern proposes that the functionality
of the user interface be split into: View and Presentation
Model. View represents the display on the user interface. It
also holds the details pertaining to the chosen technology and
graphical components. Presentation Model which on the one
hand represents an abstraction of the View independent of the
actual user interface technology, i.e. it represents the state and
behavior (logic) of the View without going into the specifics
of it rendering. On the other hand, the Presentation Model
customizes the data for presentation in the user interface, so it
could be said that it performs a specialization of the Model.

Figure 4. Presentation Model Pattern

INTERACTION (Fig. 4): According to Martin Fowler there
exist two variants of this pattern [8], [9]: In the first, which
will be referred to as PM1, the View is aware of the
Presentation Model - then the View is responsible for
synchronization. In the second, which will be referred to as
PM2, the Presentation Model is aware of the View - then most
of the synchronization is performed by the Presentation Model.
Therefore in PM2 the View is simple, it just contains properties
through which it exposes its states and it raises events in
response to user actions.

The View simply displays the state of the Presentation
Model. In accordance with the changes in the Presentation
Model the View updates the display. The Presentation Model
just changes its state and relies on the binding mechanism or a
similar technology to update the View. Therefore, the
Presentation Model alone is responsible for the display while
the View is simple. The Presentation Model also contains all
the dynamic information of a View. The View must therefore,
frequently synchronize its state with the Presentation Model,
since it holds the information the View needs to display the
controls. This synchronization is usually performed through
the use of the Observer pattern. The Presentation model
synchronizes with the Model and represents an interface

 - 735 -

towards the View. Thus changes in the Model are reflected in
the View via the Presentation Model. The Presentation Model
may be linked to several domain objects which implies that a
one-to-one relationship between the Presentation Model and
the Model isn’t required. Furthermore, several Views may use
the same Presentation Model, while on the other hand, each
View should correspond to a single Presentation Model.

The advantages of this pattern are the possibility of writing
logic which is completely independent of the View used to
display the data, and in addition, since the details concerning
the chosen technology are not a part of the Presentation Model
it can be reused. The disadvantage is that it requires a
mechanism for the synchronization of the View and the
Presentation Model.

III. COMPARATIVE ANALYSIS
 The comparative analysis of the presented PPs will be

given through two tables illustrating the main sources of
differences between these patterns, namely the concerns

associated with each of the components and the different
manners of interaction between the components. Therefore,
the first table (Tab. 1) will depict the different responsibilities
the components have in each of the patterns regarding the
identified concerns, and the latter (Tab. 2) will depict the
interactions between the components. Regarding component
interactions it should be pointed out that even within a certain
pattern there numerous variations are present. The figures
given in this paper represent component interactions most
frequently found in literature.

Finally, certain variations are the result of different
implementations of the patterns. All of the patterns in this
paper were presented without giving the specifics of their
actual implementation (how many classes will a component
contain, in which assembly will they be defined, which class
will be created first, and so on), since the goal was to identify
the key concepts of the patterns thereby enabling the
representation of these patterns as Platform Independent
Models.

TABLE I. COMPARATIVE ANALYSIS OF PRESENTATION PATTERNS REGARDING THE SEPARATION OF CONCERNS

CONCERNS View Controller/Presenter/Presentation Model Model

Autonomous View Holds the state. N/A

Manages the
behavior, state and

data of the
application domain.

Contains all of the presentation logic.

MVC
Holds the state.
Contains a minimum of presentation logic. Contains most of the presentation logic.
Synchronizes the View with the Model. Synchronizes the Model with the View.

Supervising
Presenter

Holds the state.
 Contains most of the presentation logic.
Performs simple mapping. Performs complex synchronization.

Passive
View

Holds the state.
 Contains all of the presentation logic.
 Performs synchronization.

Presentation Model
(PM 1)

 Holds the state.
Contains the logic tied to the chosen graphical components. Contains most of the presentation logic.
Performs data binding with the Presentation Model.

Presentation Model
(PM 2)

 Holds the state.
Contains the logic tied to the chosen graphical components. Contains most of the presentation logic.
 Performs synchronization.

TABLE II. COMPARATIVE ANALYSIS OF PRESENTATION PATTERNS REGARDING THE INTERACTION BETWEEN COMPONENTS

INTERACTION View Controller/Presenter/Presentation Model Model
Autonomous View Aware of the Model. N/A The Model is intended

to be completely
independent of the

presentation
functionality.
Therefore it is

unaware of both the
View and the

Controller/Presenter/
Presentation Model.

In some
implementations it can

be Observable so
either the View or the

Presenter can
subscribe to it.

MVC Aware of the Model. Aware of the Model.
Unaware of the Controller. Aware of the View.

Supervising
Presenter

Aware of the Model. For simple mapping
communicates directly with the Model.

Aware of the Model. For complex mapping
performs the communication between the View and
the Model.

Unaware of the Presenter. Aware of the View.

Passive View
Unaware of the Model. Performs all of the communication between the

View and the Model.
Unaware of the Presenter. Aware of the View.

Presentation Model
(PM 1)

Unaware of the Model. Completely responsible for the
synchronization with the Presentation Model.

Aware of the Model. Coordinates the
communication between the View and the Model.

Aware of the Presentation Model. Unaware of the View.

Presentation Model
(PM 2)

Unaware of the Model. Performs simple mapping with
the Presentation Model.

Aware of the Model. Performs most of the
synchronization between itself and the View.

Unaware of the Presentation Model. Aware of the View.

IV. CONCLUSION AND FURTHER WORK
 There exist a number of well-documented and verified

patterns that aid the resolution of problems inherent to the

presentation layer. Though the choice of the best suited pattern
is not often straightforward, comprehending, choosing and
adopting the best suited one (which entails the separation of

 - 736 -

business logic, presentation logic and the user interface-UI)
will result in numerous benefits: (1) the code becomes easier to
read, maintain and alter; (2) designers of the UI can focus on
the visual aspects of the application, and easily create and
modify the UI, while the programmers can focus on the logic
and structure of the application; (3) the amount of code that can
be automatically tested (independently of the UI) is increased;
(4) the possibility of code reuse is increased, so that certain
behaviors can be used in different parts of the same application,
while the UI can be customized to different roles and
localizations. In other word, the logic remains the same while
its visual presentation can differ, thus enabling multiple Views
requiring the same behavior to share the same code; (5) the
same data can be displayed at the same time through different
Views; (6) adding a new View does not need to affect the rest
of the application, which is significant considering that UI
requirements usually change more often than business rules.
On the other hand, the use of PPs also entails certain
problems: (1) patterns introduce several levels of connection
which increases the complexity of the solution; (2) if
communication is based on events, debugging and reading the
code is more difficult, etc.

 If the main criterion for PP selection is the degree to
which it facilitates testing, then the following should be taken
into account: the automated testing of behavior through the UI
may be complicated and time consuming, and it may be
difficult to figure out in which component the errors occurred.
By relocating some or all of the logic from the View into other
components, testing can be facilitated. If automated testing of
the UI is required then the MVP pattern and the Presentation
Model Pattern are superior to the MVC pattern. With the
Presentation Model and Passive View patterns by testing the
Presenter or Presentation Model, respectively, most of the
functionality is tested without the need for testing the UI itself,
since most of the presentation logic resides in them. In the
case of the Presentation Model the only potential source of
errors is the mapping of the controls in the View into the
Presentation Model. With the Passive View even this potential
source of errors is removed since the View does not contain
any behavior, not even the mapping. Both the Passive View
and Supervising Presenter require a mock view to mimic the
actual View during the testing. The key advantage of the
Passive View pattern in comparison to the Supervising
Presenter and Presentation Model patterns is that in both of the
latter patterns the View performs part of the synchronization,
and that part is difficult to test.

 The choice of the best suited PP also depends on the
nature of the business application being developed. If the same
Views can be applied to different data the MVC pattern is a
good choice. If the application contains complex Views that
involve numerous user interactions the MVC pattern may be
difficult to implement since each of the interactions requires a
separate Controller. In this case the MVP pattern is a better
alternative since the complex logic can be encompassed into a
single class that can be tested independently. Both the MVP
pattern and the Presentation Model pattern support multiple
UIs so they are a good choice for applications requiring the
use of various UI development technologies. The MVP pattern
is favored if the data supports binding and doesn’t require

conversion and modification prior to being displayed, while if
the opposite holds true the Presentation Model is preferred.
Finally, some technologies providing automated architecture
development require the use of particular patterns.

 The chosen PP might further enable the automated
development of the presentation layer of a business application
through the transformation of the chosen Pattern, defined as a
Platform Independent Model, into an implementation of that
Pattern on the chosen development platform.

 The set of concepts (components and means of interaction
among them) comprising the chosen PP represent elements of
the Presentation Pattern metamodel (M2 layer of the OMG
MDA [2]). These metamodels can be specified as specialized
UML metamodels [1], [10]. Consequently, based on these
identified concepts, UML profiles [11] could be created and
then utilized in the presentation layer design phase. Moreover,
for the development of a Platform Independent Model of the
presentation layer, a UML profile could be defined for each of
the Patterns discussed in this paper. Finally, it would be
necessary to define the corresponding rules of transformation.
The automatic transformation from PIM to PSM could then be
accomplished using CASE tools.

 In conclusion, the design of a business application's
presentation layer should commence with choice of the best
suited PP, followed by the creation of an actual model of the
presentation layer using the corresponding UML profile which
would finally be transformed into concepts of the
implementation environment.

ACKNOWLEDGMENT

This paper was supported by the Ministry of Education and
Science of the Republic of Serbia, Grant III-44010.

REFERENCES
[1] R. France, D. Kim, S. Ghosh and E. Song, “A UML-Based Pattern

Specification Technique”, IEEE Transactions on Software Engineering,
v.30 n.3, p.193-206, March 2004.

[2] Model Driven Architecture - A Technical Perspective, OMG Document
ormsc/01-07-01, Architecture Board, Available at: http://www.omg.org/

[3] Petrović M., Turajlić N and Dragović I, “A Review and Comparative
Analysis of Presentation Patterns”, Journal of Information technology
and multimedia systems Info M, Vol. 34/2010, pp. 35-41, 2010.

[4] http://msdn.microsoft.com
[5] S. Koirala, “Comparison of Architecture presentation patterns

MVP(SC), MVP(PV), PM, MVVM and MVC”,
http://www.dotnetfunda.com/articles/article830-comparison-of-
architecture-presentation-patterns-mvpscmvppvpmmvvm-an-.aspx

[6] J. Miller, “Building your own CAB”,
http://www.jeremydmiller.com/ppatterns

[7] S. Burbeck, “Application Programming in Smalltalk-80: How to use
Model-View-Controller (MVC)”, UIUC Smalltalk Archive, http://st-
www.cs.uiuc.edu/users/smarch/st-docs/mvc.html.

[8] M. Fowler, “Development of Further Patterns of Enterprise Application
Architecture”, http://martinfowler.com/eaaDev/index.html

[9] M. Fowler, “Patterns of Enterprise Application Architecture”, Addison-
Wesley, 2003.

[10] X Pang, K Ma, and B Yang, “Design Pattern Modeling and
Implementation Based on MDA”, LCNS, Vol. 6988, pp 11-18, 2011.

[11] N.C. Debnath, A. Garis, D. Riesco and G. Montejano, “Defining
Patterns Using UML Profiles”, in Proc. of IEEE Intl. Conf. on Computer
Systems and Applications 2006, pp.1147-1150, 2006

