
INFOTEH-JAHORINA Vol. 10, Ref. E-VI-2, p. 851-854, March 2011. 

 851

 
 

BUILDING A POWER EFFICIENT SYSTEM WITH RTOS, TCP/IP STACK AND FILE 
SYSTEM 

 
 

Vladica Sark1), Josif Kosev2), Faculty of electrical engineering and information technology, Karpos bb, 1000 Skopje, 
Macedonia, email: 1) sark@feit.ukim.edu.mk; 2) j.kosev@ieee.org  

 
 

Abstract - Embedded systems are getting more and more demanding and require more 
and more energy for the tasks they are intended to do. Usually today’s embedded systems 
are required to have more and more peripherals, which on the other hand requires more 
and more energy consumption, more memory and more powerful processor to utilize. This 
paper presents a solution for this kind of embedded system that has real-time operating 
system, TCP/IP stack, FAT file system and at the same time is poor with memory and 
processing power, which allows less energy consumption. All this functionalities are 
implemented on not so powerful ARM7 controller. Also, capabilities for energy saving are 
considered. This energy saving capabilities are intended to be included in the operating 
system and to be used without direct interaction of the user code. At last, an operation 
system is ported for this ARM7 controller and TCP/IP stack and file system are embedded 
together with it. Also, power saving features is added to this operating system. The 
conclusion presents how much resources are needed for this system to operate. 

 
 
1. INTRODUCTION 
 

As we know, today, embedded systems are playing a big 
role in our life. Everything is “digital” and everything is 
attempted to be microprocessor controlled. Not being 
microprocessor controlled, makes one system outdated and 
not attractive.  

Today, on the market of microprocessors and 
microcontrollers there are a dozen of players, offering a 
palette of hundreds of different microprocessors and 
microcontrollers. Starting from the simplest eight bit 
microprocessors up to multicore processors for embedded 
applications, we have a lot of choices for choosing the right 
processor for our application. Usually, the powerful 
microprocessors like OMAP, ARM9 and so on, come with 
Linux, Android, Windows CE support. Of course, there are 
more operating systems, for these microprocessors, than we 
can imagine, but the application, in which the microprocessor 
is going to be used, limits the choice on a fewer operating 
systems. Even, today, we have very powerful 
microprocessors, which are usually widely used in mobile 
phones, video cameras, photo cameras, set top boxes and so 
on, the demand for the low end microprocessor, embedded in 
microcontrollers, is still quite large. This actually can be seen 
from the manufacturer’s palette of offered products. Big part 
of their business is actually comprised from the low end 
microcontrollers. There is more than one reason for this. 
Actually, there are a lot of reasons, but we will discuss only a 
few, which we think that are maybe most important. The 
users that use these microcontrollers usually want to build a 
system, which is going to be as simple as possible, but still 
enough powerful for the task intended for. This will make the 
development less complex and at the same time less 
expensive. Size also plays a big role in the whole concept. 
Usually, here it does not mean that good things come in small 
packages. Powerful microprocessors, in most cases, need an 
external RAM and flash memory, so they are required to have 

address bus and also data bus. This increases pin count and 
also, it is a reason for more complicated PCB. Finally, the 
last, but not the least significant reason for using low end 
microcontrollers, whenever possible, is the price of the chip.  

Today, there are a bunch of cheap microcontrollers, with 
pretty, good performances. One of them are ARM7 based 
microcontrollers from different manufacturers. One example 
is ARM7 form NXP. These microcontrollers comes with a lot 
of integrates peripherals, also including limited RAM and 
flash memory, for very reasonable price. Of course, putting 
some modern embedded operating system, like Linux, on 
these microcontrollers is impossible, only because of limited 
RAM and flash memory. This can be a problem, if a 
complicated application is intended to run on this kind of 
system. Using operating system, make things simpler, 
because the developers of the software for the system can 
only write separate tasks, without needing to learn the 
microcontroller. Of course, if there are strict timing 
requirements, it is necessary to have a real-time operating 
system. 

This paper describes, how one embedded real-time 
operating system was ported for a specific processor and also 
how that operating system was upgraded with TCP/IP stack, 
file system and some power saving features.  

The overall system was actually built on one chip with 
internal RAM and flash memory, what makes that system 
very useful for cheap applications. 
 
2. PORTING RTOS TO AN ARM7 SYSTEM 
  

The RTOS (Real-time operating system) that we have 
chosen to port on a ARM7 (LPC2378 exactly) system is 
FreeRTOS. There are more reasons why this RTOS was 
chosen to be used. In table 1 there are some characteristics 
that this RTOS have and some other RTOSs, even 
commercial ones, does not have.  

 



 

 852

 
 
 
Table 1 – FreeRTOS functionalities 

No. RTOS functionality 
1 Free RTOS kernel - preemptive, cooperative and 

hybrid configuration options.  
2 Official support for 23 architectures (counting ARM7 

and ARM Cortex M3 as one architecture each).  
3 FreeRTOS-MPU supports the Cortex M3 Memory 

Protection Unit (MPU).  
4 Designed to be small, simple and easy to use. Typically 

a kernel binary image will be in the region of 4K to 9K 
bytes.  

5 Very portable code structure predominantly written in 
C.  

6  Supports both tasks and co-routines.  
7  Powerful execution trace functionality.  
8  Stack overflow detection options.  
9 No software restriction on the number of tasks that can 

be created.  
10 No software restriction on the number of priorities that 

can be used.  
11 No restrictions imposed on priority assignment - more 

than one task can be assigned the same priority.  
12 Queues, binary semaphores, counting semaphores, 

recursive semaphores and mutexes for communication 
and synchronisation between tasks, or between tasks 
and interrupts.  

13 Mutexes with priority inheritance.  
14 Free development tools (Cortex-M3, ARM7, MSP430, 

H8/S, AMD, AVR, x86 and 8051 ports).  
15 Free embedded software source code.  
16 Royalty free.  
17 Cross development from a standard Windows host.  
18 Pre-configured demo applications for selected single 

board computers allowing 'out of the box' operation 
and fast learning curve. 

 
 
As can be seen from table 1 there are a lot of 

functionalities and characteristics that FreeRTOS has and 
what some other RTOSs does not have. For example, the first 
functionality is very important and allows the user to control 
how the RTOS is going to threat different situations. 
FreeRTOS has ability to work as a preemptive, cooperative 
and as a hybrid RTOS. This is not possible with a lot of 
RTOSs.  

Functionalities 10 and 11 from table 1 are also important. 
It is very common case when user needs to have 2 tasks with 
same priority. Some commercial RTOSs are only able to 
assign one priority per task.  

Porting this RTOS on ARM7 architecture was not very 
hard, because it already exists port for the ARM7 
architecture.  

Our port was designed to run on an LPC2378 from NXP. 
This microcontroller has 56 Kbytes of RAM and 512 Kbytes 
of flash memory. It also have a lot of other peripherals like: 
DMA, USB, Ethernet, I2C SPI, GPIO, UART etc. that makes 
it ideal for this RTOS. It is also cheap and does not require 
external peripherals to run, what makes possible to build very 
simple system with capabilities like some modern systems. 

Of course, the price we pay is the limited speed and limited 
memory resources. But, there are a lot of applications which 
does not require so much memory resources and speed, what 
makes this system ideal for them.  

 

 
 Figure 1 – FreeRTOS structure 
 
 
 On figure 1 is shown how the FreeRTOS code is 

organized. At the bottom of the figure is the part of the 
operating system that is architecture specific. There are 
functions that access the peripherals, in our case timers and 
interrupt controller, which are used for task switching. The 
other part in the bottom is for the functions that actually 
implement task switching. This part is done in assembler, 
because it is microcontroller specific and also it does some 
things that C compiler would not allow. In this case, only the 
part for the peripherals was written from scratch. The part 
that is specific for the ARM7 microcontrollers was not 
changed because LPC2378, that is used, is ARM7 based. The 
FreeRTOS core is written in C. It is intended to be portable, 
so at this stage it doesn’t have to be changed. RTOS settings 
are something that should be adopted for every 
microcontroller, even maybe, for every application. It mainly 
concerns the memory model of the microcontroller. In that 
part the memory model for each task is specified and also a 
heap for all tasks is specified. That part of the RTOS was also 
written when porting the RTOS. Finally, the top level on the 
figure is user specific at this stage. Users, that use this port, 
define their own tasks here. 

 
3. INTEGRATING LWIP TCP/IP STACK 

 
The lwIP (Light Weight Internet Protocol) stack is an IP 

stack intended to be used on embedded systems.  It is a free 
and open souce TCP/IP stack and supports all the important 
functionalities of the TCP/IP v4 protocol. It is being actively 
developed and new versions are coming over and over. This 
means that all important new functionalities are being added. 
As the name suggests, the lwIP is light weight, which means 
that it is very suitable for using it on some embedded system 
with limited resources.  

The lwIP stack is intended to be used with operating 
system, even it can be used without it, so the code is 
organizes as one task that should be started from the 
operating system. On the figure 2 there is a simple illustration 
of how the stack is organized. As can be seen, the stack is 
mainly consisted of three parts. The lowest part is hardware 
specific. It is used to access the hardware that is responsible 
for sending and receiving Ethernet packets. The LPC2378 has 



 

 853

a media independent interface (MII) on which is connected 
an external Ethernet chip. The lowest part on the figure 2 is 
used for setting up and accessing MII. It is responsible of 
sending and receiving Ethernet packets in which are 
encapsulated IP packets.  

 

 
Figure 2 – lwIP structure 
 

In our system a KS8721BL chip is used. This chip is a fully 
compliant with IEEE 802.3u standard. It supports 100BASE-
TX/100BASE-FX/10BASE-T physical layer. Because this 
part is specific for the used hardware, it has been written 
especially for the hardware used. It is actually one file with 
few functions in it, that set up registers for MII, registers on 
the KS8721BL (the Ethernet chip) chip and send and receive 
Ethernet packets to and from the MII interface.  

If, in the future, other chip is going to be used with this 
system, only this file should be adjusted. 

The middle part from the figure 2 is actually the lwIP. It 
is consisted of one task that runs the lwIP core and 
communicates with other tasks requiring lwIP access. This 
part is used as is and the only thing that is configured is the 
priority of this task, what proved to be very important.  

Finally, the highest part of the figure 2 is the part that is 
used to send messages. FreeRTOS has implemented 
“message queues” mechanism for intertask communication. 
Of course, creating, formatting and sending message via the 
queue, directly, is not elegant solution. Because of that, lwIP 
has functions, which accept TCP and UDP packets, from user 
tasks, and create messages that are passed to the lwIP task. 
So, the user has feeling that he is putting TCP and UDP 
packets directly in the lwIP stack, without using “message 
queues”. 

It seems at first that this solution, with separate task for 
lwIP and message queues, is not happily chosen and it is too 
complicated. From the user perspective, it is not so 
complicated. The user that sends and receives IP packets does 
not have an idea what happens in the background. For porting 
this system, it might be a little confusing at first, but this 
solution actually enables more than one task to send IP 
packets simutaniously. If the lwIP access was not solved this 
way, a mess would happen when more than one task would 
try to access it simultaneously.  
  
4. INTEGRATING FILE SYSTEM 
 

As it was mention earlier, integration of the file system 
has been done for this system. Of course, there is a wide 
choice of file systems available, including commercial and 
open source. For our purpose, EFSL (Embedded File System 

Library) was chosen. This is open source file system, free, of 
course and not so popular. It is not popular, because it 
development is not active for few years and it supports only 
FAT12, FAT1 and FAT32. It is also ported for a few 
microcontrollers and does not have support for operating 
system. Of course, there are some good stuff why this file 
system was chosen. It is pretty simple, lightweight and does 
not require much effort to be ported. On figure 3, there is the 
structure of the final port for LPC2378. 

 

 
Figure 3 – Final structure of the ported file system 
 
The only thing that has been used as is, is the EFSL 

library. The other stuff was written from scratch and as can 
be seen, they have the same structure as the lwIP. 

This system is intended to be used with external SD card, 
because this card is widely used in consumer electronics, is 
easily affordable and because LPC2378 has SD card interface 
with dedicated hardware for SD card access.  

The hardware adaptation layer has been written and it was 
used to initialize the SD peripheral, to get the properties of 
the SD card inserted them in the system and to read and write 
sectors from the SD card. From here on, these functions are 
used directly by EFSL and user does not need to use them. 
The rest of the structure is like the lwIP structure, from the 
same reasons mentioned there. 
 
5. ADDING POWER SAVING FEATURES TO 
FREERTOS 
 

FreeRTOS, as is, does not include power saving 
functionality. In today’s systems, power efficiency is 
important feature, because, a lot of systems derive the power 
from energy limited sources, like batteries.  

The first thing that has been done in solving this issue, is 
putting the processor in sleep mode whenever possible. This 
is done very easy if there is no operating system, but when 
RTOS is employed, it is not so simple.  The problem is that a 
task should not put the processor in sleep mode, because 
there might be some other task, with lower priority, waiting 
to be executed.  

To solve the issue mentioned, FreeRTOS core source was 
examined. The core, itself, has an idle task, which is called 
whenever there is no other task requiring service. This task is 
used to clean memory, if there is task that is disposed 
(erased). So, after performing the memory cleaning, the 
processor can go in sleep mode, until next timer tick issues 
wake up. Using this simple procedure, the processor can go 
in sleep mode, every time when the idle task is started. Of 
course, turning off peripherals is more complicated task. It 



 

 854

requires knowledge of what peripherals remain active when 
processor goes into sleep mode. This was not implemented at 
this time, but it is considered for future work. 

 
 

6. TESTING AND RESULTS 
 

Testing of the functionality and efficiency of the overall 
system has been done. Yet, more extensive testing is to come, 
because some new functionalities should be done and test 
benches should be written.  

The footprint of lwIP is about 20 Kbytes. This footprint is 
achieved with UDP and TCP included, plus DHCP and other 
functionalities. If functionalities of the stack, that are not 
needed, are excluded, then the footprint can be further 
reduced. 

The footprint of the EFSL is about 12 Kbytes. This 
footprint can not be reduced further, because there are no 
functionalities that can be excluded.  

FreeRTOS has a footprint of about 35 Kbytes. This 
footprint is with all options included, but basic configuration 
should not exceed 10 Kbytes.  

At last, when the system has started functioning, 
additional test samples has been made, to test proper function 
of some of the functionalities. The simplest test that has been 
made was for testing if the user tasks are working correctly. 
This test was creating a task that toggles a LED on the 
development board. Of course after setting the right priority 
of this task, it worked as it should. The second test was more 
complicated. It was intended to test the interrupt 
functionality. Using interrupts under RTOS might be a little 
harder than on a system without it. With RTOS, interrupts 
can not be handled directly from C compiler, because the 
compiler is not aware of the operating system. This means 
that if interrupt is called and handled directly from C code, 
the compiler will not save the currently running task context, 
so, after returning from the interrupt, the task context will be 
messed up. This requires a separate assembler macro that will 
save the context and after that call the interrupt handler, 
normally written in C. After returning from the interrupt, the 
context is restored and the control is returned to the RTOS 
and currently running task. For testing interrupt handler 
functionality, two examples have been written. The first one 
was using timer interrupt and was toggling a LED on the 
development board. The second one was for using LPC2378 
serial port. It had interrupts for sending and receiving data via 
serial port. The system was connected on a PC and tested 
with hyper terminal. 

The next test was for the lwIP stack. First thing, was 
testing of the DHCP client. The system was connected on the 
network and DHCP server has been set up on a PC. The lwIP 
successfully obtained IP address from the server. Other test, 
concerning data sending and receiving has been also 
performed. For this test, special software for the PC has been 
developed. This software had a server, listening on a port and 
awaiting connection from the client. The client was the 
LPC2378 system. The client connects on the host machine 
and starts sending data. The server checks if that data is 
correct and measures the data rate. Achieved data rate was 
about 700 kbit/s, even the system was connected on 100 
MB/s network. The low data rate is because of the low 
processing power of the microcontroller, but this data rate is 
more than enough for a lot of applications. This data rate was 

achieved using UDP. For TCP transfers, lower data rate is 
expected, because this protocol is more complex than UDP. 
Also, our system has been configured as a server, listening on 
a port. The system successfully accepted connections from 
other clients. 

Finally, the EFSL has been tested. Only basic tests were 
performed in this case. An SD card of 2 GB has been used for 
this test. The test scenario has been including creation of file, 
sequential writes and reads and random writes and reads. 
These tests passed successfully.  

 
7. FUTURE WORK 
 

The future work will be mainly focused of writing drivers 
for the microcontroller peripherals (ADC, PWM, RTC, SPI, 
I2C, CAN, USB etc.). The most of the peripherals would not 
require porting of new software, but the USB would require 
an USB stack. The stack is not yet chosen and probably some 
open source stack will be used.  

Of course, additional tests should be written to test the 
lwIP and EFSL. Especially EFSL was not tested extensively, 
so extra tests should be performed, regarding functionality 
and speed. 

 
8. LITERATURE 
 
[1]     FreeRTOS.ort, www.freertos.org, Bristol, UK 
[2] Richard Barry, Using the FreeRTOS real time 
kernel, LPC 17xx edition, Real Time Engineers Ltd., 2010 
[3] lwIP wiki, http://lwip.wikia.com/wiki/LwIP_Wiki 
[4] lwIP official site 

http://savannah.nongnu.org/projects/lwip/ 
[5] Adam Dunkels, Design and implementation of the 
lwIP TCP/IP stack, Swedish Institute of Computer Science, 
February 20, 2001 
[6] EFSL official site, http://efsl.be/ 
[7] C. (Kees) Pronk, Verifying FreeRTOS; a feasibility 
study, Report TUD-SERG-2010-042, Delft University of 
Technology, 2010 
 


