THE CONSTRUCTION OF A MIXED UNIT INVENTORY FOR MACEDONIAN TEXT-TO-SPEECH SYNTHESIS

Branislav Gerazov and Zoran Ivanovski, Faculty of Electrical Engineering and Information Technologies, Skopje, Macedonia

Abstract - The paper presents in detail the construction process of the mixed inventory unit database used for the text-tospeech (TTS) system "Speak Macedonian". Units called quasi-diphones form the basis of the system's mixed inventory. The selection of the quasi-diphone units to be recorded from the complete diphone set of Macedonian is discussed in detail and a list of the chosen diphones is included in the paper. The selection was made to provide maximum synthesized speech quality at minimum inventory size. Details have been given of the recording and the unit segmentation process. The interface between the recorded audio and the TTS system was also discussed. The presented information may be of use for the development of future databases for TTS systems both for Macedonian and for other languages.

Key words – TTS, unit, mixed inventory, diphone, segmentation, recording

1. INTRODUCTION

The three paradigms of Text-to-Speech (TTS) synthesis are articulatory, formant and concatenative synthesis, [1 - 3]. Up until the 1990's, TTS synthesizers predominately used articulatory and formant synthesis, both based on modeling the speech production process and thus both with a high development cost. Since then TTS systems became increasingly based on concatenative synthesis, which uses concatenation of prerecorded natural speech segments, also called units, to generate the requested speech output. This approach gives the synthetic speech a very natural sound while avoiding the expensive speech model development process, thus concatenative speech synthesis is extremely cost-effective and has allowed the proliferation of TTS systems across the globe.

Various unit lengths are used in concatenative synthesis, the longer the units the more natural the output speech, but the bigger the database. Most systems are based on diphones, which comprise two half-phones and the transition between them. Diphones usually number around 1000 per language and provide for reasonable speech quality. The most popular diphone based systems are AT&T's diphone based TTS system and Dutoit's MBROLA synthesizer [4, 5]. These systems are called monorepresented inventory systems because they mostly have only one recording of each unit to use for synthesis.

Modern state-of-the-art TTS system use expanded inventories with large unit databases with multiple units per phonetic content. The quality these systems relies heavily on the algorithms used for the selection of the most appropriate unit for concatenation, giving them the name unit-selection TTS systems. Famous unit-selection TTS systems are the Festival System from the University of Edinburgh and AT&T's NextGen synthesizer [6, 7].

To date two high quality systems have been developed for TTS synthesis in Macedonian: TTS-MK, a diphone based system developed at FON University, [8], and "Speak Macedonian", a mixed-length unit inventory system developed by the authors [9]. Both are monorepresented inventory systems.

The quality of the unit inventory is detrimental to the output speech quality of the TTS system, especially in

monorepresented inventory systems. Because of this the creation of the inventory i.e. the recording and segmentation of the speech audio material is crucial to the overall quality of the TTS system, [10, 11, 12, 13].

This paper presents in detail the recording and segmentation process used in the creation of the unit inventory of the system "Speak Macedonian". It is by disseminating this information that we hope to contribute to future unit inventory developments.

2. DIPHONES VS. QUASI-DIPHONES

Although the phone is the basic acoustic unit of speech, synthesizing speech by concatenating phones yields poor results. This is because of the great difficulty in simulating the interphone transition. The more common approach is to use a unit that includes half of each phone and the transition between them, called a diphone.

The TTS system "Speak Macedonian" uses a unique mixed-rank inventory featuring two sets of units: phones and quasi-diphones. The quasi-diphone (further written q-diphone) is a unit we created as a variation of the classic diphone concept. The q-diphone differs to the diphone in the respect that it comprises the two phones in their entirety. This allows q-diphones to be concatenated naturally with regular phones and vice versa.

When the need arises of concatenation of two succeeding q-diphones, q-diphones are easily demoted to classic diphones by trimming and can thus be concatenated. The trimming is facilitated using transition markers that give the boundary location between the two phones within each q-diphone, with the cut set to half way between the transition marker and the end to be trimmed.

The use of q-diphones decreased the necessary size of the inventory which in turn decreased the development cost of the inventory, while maintaining high-quality output.

3. MACEDONIAN PHONES

Macedonian is comprised of 34 basic phones, 28 of which are represented with a unique letter in the alphabet. The letters together with their IPA (International Phonetic Alphabet) equivalents are presented in Table I. Of these, five are vowels (/a/, /ɛ/, /i/, /ɔ/ and /u/), and the rest are consonants. Grouped according to the manner of articulation the consonants are comprised of: 6 plosives (/b/, /p/, /g/, /k/, /d/, /t/), 3 approximants (/j/, /r/), 7 fricatives (/v/, /f/, /z/, /s/, / $\frac{0}{2}$ /, / $^{\bullet}$ /, /h/), 6 affricates (/d $\frac{0}{2}$ /, /t $^{\bullet}$ /, /dz/, /ts/, / $\frac{1}{2}$ /, /c/) and 3 nasals (/m/, /n/, / $\frac{1}{2}$ /) [14]. The letter " π " reads /×/ but also /l/ when preceding the front vowels /ɛ/ and /i/, and the approximant /j/. The letter " π " reads /lj/. The cluster /lj/ was treated as a phone, due to its compactness and the tendency to palatize it in common speech. The phone /r/ can become syllabic / r/ when enclosed by consonants, as it is in: "првиот" /prviɔ t/ (eng. the first), " 'põet" / r bɛ t/ (eng. spine) etc. Finally /n/ is velarized to /ŋ/ before /k, g/, as in "банка" /baŋka/ оr "англиски" /aŋgliski/, [15]. The phones /l/, / r / and /ŋ/ are coded with "w", "q" and "n" further in the text.

TABLE I PHONE INVENTORY OF MACEDONIAN WITH CORRESPONDING IPA EQUIVALENTS

Α	/a/	И	/i/	С	/ s /
Б	/b/	J	/ j /	Т	/ t /
В	/v/	К	/ k /	Ќ	/ c /
Г	/g/	Л	/ /,/1/	У	/ u /
Д	/ d /	Љ	/ lj /	Φ	/ f /
Γ́	/ /	М	/ m /	Х	/ x /
Е	/ /	Н	/ n /, / ŋ /	Ц	/ /
Ж	/ /	Њ	/ /	Ч	/ /
3	/ z /	0	/ /	Ų	/ /
S	/ /	П	/p/	Ш	/ /
		Р	/r/,/r/		
			-	•	

3. MACEDONIAN DIPHONES

The set of diphones found in a language is an essential starting point for developing a diphone-based TTS system for that particular language. This is highly specific to the language at hand, and calls for its thorough phonetic analysis. Such an analysis for the Macedonian language was undertaken by the authors as presented in [16]. In the analysis, a set of 707 unique diphones was extracted from a large body of text in Macedonian, that totaled more than 2,3 million words. This diphone set served as the basis for the recording of the q-diphone unit inventory used by our system.

3. UNIT DATABASE

A. Selecting the Quasi-Diphones

A selection of diphones was made from the complete set of diphones for the recording of the q-diphone set in the unit inventory. The following sets of diphones were eliminated from the final recording list:

i) diphones that began or ended with silence -62 in total. This was directly provided by the use of q-diphones which allow using a simple fade-in/fade-out at the boundary of word instead of diphones comprising silence.

ii) diphones that ended with a voiceless plosive (/p/, /k/, /t/) or affricate (/t $^{\bullet}$ /, /ts/, /c/) – 114 in total. These phones are always preceded by a short period of silence due to their manner of articulation, i.e. there is a short stop in the airflow through the vocal tract which generates a build up of air

pressure, that is released in a short burst to articulate the phone. This separates their waveform completely from the preceding phones, which have also little influence on their spectral content. This is because spectral coloring of a phone is largely influenced by the succeeding phone, because the vocal tract is already preparing to articulate it, termed coarticulation. The coarticulation effects of plosives on previous phones was seen as minor and disregarded. Fig. 1 shows spectral coloring for the plosive /k/ in two different phonetic contexts - /uka/ and /aku/. We can see that the coloring is influenced by the phones succeeding /k/ and not preceding. Also we can see that /k/ itself has little influence on the spectral content of its predecessors.

Fig. 1 – Spektral coloring of /k/ in two phonetic contexts: /uka/ (*top*) and /aku/ (*bottom*)

iii) diphones that ended with a voiced plosive (/b/, /g/, /d/),or affricate (/d $^{(2)}$ /, /dz/, / $^{(5)}$ /) – 87 in total. In contrast to voiceless plosives and affricates these phones do not feature a complete stop in vocalization. Rather during the pressure buildup process airflow is maintained through the nasal cavity giving a nasal sound. Because of the low level of this nasal sound a smooth transition to it was seen as unnecessary to maintaining a high output speech quality. Fig. 2 illustrates the spectral behavior of /g/ in two phonetic contexts: /uga/ and /agu/. We can see that although /g/ is heavily influenced by the following phoneme it has little influence on its predecessors.

iv) diphones that comprised two identical phones -12 in total. These can be easily obtained using the phone set.

Other q-diphone groups where also considered for elimination such as those containing fricatives, however due to coarticulation effects, they were included in the database, Fig. 3. This increased the database from the original 131 to 449 q-diphones, giving a reduction of 36% from the 707 full diphone inventory size. The recorded q-diphones are given in Table II at the end of this paper.

Fig. 2 – Spektral coloring of /g/ in two phonetic contexts: /uga/ (*left*) and /agu/ (*right*)

Fig. 3 – Spectral influence of /s/ on its predecessor phones can be seen in both phonetic contexts: /usa/ (*left*) and /asu/ (*right*)

B. Recording and segmentation

The set-up used for recording the audio needed for building the database featured a standard consumer microphone connected to a Lexicon Lambda audio interface, and a personal computer with audio editing software. The microphone was positioned at a 25 cm distance from the speaker at a 30° angle from the speaker's central axis. This gave a good signal quality eliminating puffs from plosives and high levels from fricatives, while maintaining an acceptable signal level. The digitization was done with a 44.1 kHz sampling rate and a 16-bit resolution.

The total set of q-diphones was recorded in several sessions over a 3-day period. Each of the sessions was divided into recording time and segmentation. One of the authors' voices was used for the recording process. The units were extracted from direct unit vocalization, not from continuous speech. This allowed for a much more efficient recording and inventory creation process. A short subset (up to 10) diphones were spoken and recorded at a time, each of them spoken a minimum of 2, but for some diphones up to 10 times. Special attention was put on the clear pronunciation of the diphones at hand while maintaining normal speaking rhythm. The latter was important because putting the speaking focus on the diphones increased their duration in respect to their duration in normal speech. This was seen as problematic during the segmentation of some phones, such as plosives and affricates (/k/, /t $^{\bullet}$ / etc.) which needed to be preserved in their entirety.

During pronunciation the q-diphones were enclosed in carrier syllables with no semantic meaning that were made up by the speaker during the recording process. These carrier syllables mainly comprised of two vowels added on each end of the q-diphone, except for the q-diphones that contained a vowel already. This was necessary in order to get proper amplitude levels for the diphones, which were not provided when the q-diphone was used at the beginning or the end of an utterances. Devoicing also precluded the use of some q-diphones at the end of utterances. Pitch frequency of the q-diphones was maintained by playing a reference 120 Hz drone to the speaker in the recording process.

These short recordings were then processed with a denoising algorithm based on spectral subtraction with a setting of -6 dB noise reduction at a +3 dB offset to the predicted noise level. This was necessary to eliminate the high frequency noise present in the recording due to the low quality microphone used.

After each diphone subset was recorded and denoised, the recording was analyzed and the best quality diphones were selected for segmentation. These were copied together with their surrounding phones to a master *wav* audio file where they were normalized. Normalization was based on the vowels as they are the loudest and were included in all carrier syllables. The following normalization levels were used: -8 dB for open and mid vowels (/a/, / \mathcal{E} /, /i/), -10 dB for closed vowels (/ \mathcal{I} /, /u/), and -12 dB if the previous choices amplified the diphone of interest too much, e.g. when surrounding vowels were spoken at a lower level than usual. Some fricatives, such as / $^{\bullet}$ /, were normalized on their own to lower their level.

Finally, each q-diphone was marked with three markers. The first gives the start point of the first of the phones in the pair. This marker also holds the name of the q-diphone. The second marker gives the transition point between the phones, and the third the end of the q-diphone, Fig. 4. The marker data is saved in a separate *mrk* file, that is parsed by the system to extract the units from the audio file. The use of markers and a single audio file, allow easy database management. All unit corrections can now be done with simple marker repositioning, and the addition of new q-diphones is easily achieved by adding the q-diphone to the audio file and marking it. The TTS system automatically applies the changes to its inventory at run-time.

Fig. 4 - The quasi-diphone /c $\overset{\mathbf{x}}{\mathbf{x}}$ as contained in the master audio file delimited with markers

During the marker positioning special attention was paid to the unit length. As mentioned, due to the deliberate focus on the diphones, recorded phone lengths were greater than their average lengths in normal speech. Several unit lengths were used as standard for segmentation: 100 ms for vowels, 80ms for fricatives and affricates, 70ms for approximants, and 60ms for the rest. Some units were necessarily included whole such as plosives and affricates which were segmented with an included 30 ms stop duration. The absolute unit duration in the inventory is not detrimental to the rhythm of the output speech as unit lengths are modified using the pitch-synchronous overlap-add (PSOLA) algorithm during synthesis, however, the closer they are to the length required in synthesis the better the speech output quality.

At the end representative segments for each phone were chosen from the master audio file and were copied to another audio file that would comprise the phone set. The set contains 32 phones. The phones /1/ and $/\eta/$ were not included, as they appear only in the diphones already contained in the q-diphone set. Two markers were used to select the phones.

The master audio file has a total duration of 3 min 50 s with a total q-diphone unit duration of 1 min 20 s, at a 175 ms q-diphone duration average. The size of the *wav* file is 19.4 MB, of which 6.63 MB go to the q-diphones. This gives a 34% efficiency which is understandable giving that q-diphones are usually selected from parts of the phone durations and other phones are included in the file as well as periods of silence. The second *wav* file has a total duration of 8.5 s with 2.6 s of phones at 30% efficiency, averaging to 82 ms per phone. The file size is 742 KB, of which 227 KB go to the phones. This data is summarized in Table III.

The TTS system used the marker data to create the unit inventory from the audio file. The names of the segments are extracted from the start markers and stored in a name matrix. No list of q-diphones is required in the TTS system for the inventory to be built. This allows easy inventory scalability. The audio for each q-diphone is extracted from the start marker to the stop marker and stored in a cell array. The positions of the transition markers for the q-diphones are also stored for use in the synthesis algorithm. Namely if one phone is mapped to two consecutive q-diphones such as $/ \Im/$ and /n/ are in the q-diphone mapping of the word $/mak \& d \Im ski/$ i.e. $/ma/-/k \& /-/d \Im/-/\Im n/-/ns/-/ki/$, then the q-diphones at the borders where they meet by disregarding the halves of the phones at borders relative to the transition markers. Transition markers are also used in the PSOLA algorithm to determine which part of the q-diphone is voiced and which is unvoiced, which is important for the pitch and duration modification process.

TABLE III – Q-DIPHONE AND PHONE UNIT SET DATA SUMMARY

		unit set			
		q-diphone	phone		
wav total	duration	3min 50s	8.5s		
waviolai	filesize	19.4 MB	742 KB		
wav unit	duration	1min 20s	2.6s		
wav unit	filesize	6.63 MB	227 KB		
unit	count	449	32		
average	duration	175 ms	82 ms		
peak le	evel [dB]	-5 dB	-7 dB		
RMS	maximum	-13 dB	-15 dB		
power	minimum	-35 dB	-52 dB		
[dB]	average	-21 dB	-23 dB		

4. CONCLUSION

The paper presents in detail the creation process of the mixed inventory unit database used for the TTS system "Speak Macedonian". The unit inventory is based on q-diphone units a set of which was selected from the complete diphone set of Macedonian. The criteria used in the selection process are discussed in detail and a list of the recorded q-diphones is included in the paper. The selection made provides maximum speech quality at minimum inventory size. Details have been given of the recording and the unit segmentation process. At the end, the interface between the recorded audio and the TTS system was also discussed. The presented information may be of use for the development of future databases for TTS systems both for Macedonian and for other languages.

REFERENCES

[1] Jurafsky D., J. H. Martin, "Speech and Language Processing: An introduction to natural language processing, computational linguistics, and speech recognition", 2 ed., Prentice Hall, May 2008

[2] O'Shaughnessy D., "Modern Methods of Speech Synthesis," IEEE Circuits and Systems Magazine, vol. 7, No 3, 3rd Quarter 2007, pp. 6 - 23.

[3] Lemmetty S., "Review of Speech Synthesis Technology", Ms. Thesis, Helsinki University of Technology, 1999

[4] Olive J., J. van Santen, B. Möbius and C. Shih. "Synthesis". In R. Sproat (Ed.), *Multilingual Text-to-Speech Synthesis: The Bell Labs Approach*, Kluwer, 1998.

[5] Dutoit T., V. Pagel, N. Pierret, F. Bataille and O. Vrecken, "The MBROLA Project: Towards a Set of High Quality Speech Synthesizers Free of Use for Non-Commercial Purposes", Proceedings of ICSLP 96, 1996.

[6] Black A., P. Taylor, "The Festival Speech Synthesis System: system documentation," Techincal Report HCRC/TR-83. Human Communications Research Centre, University of Edinburgh, Scotland, UK, Jan 1997. [7] Beutnagel M., A. Conkie, J. Schroeter, Y. Stylianou, A. Syrdal, "The AT&T Next-Gen TTS System," Proc.of the Joint Meeting of ASA, EAA, and DAGA, Berlin, Germany, 1999.

[8] Чунгурски С., Говорни синтетизатори на македонски јазик, Докторкса дисертација, Факултет за електротехника и информациски технологии, Скопје, Македонија, 2009.

[9] Gerazov B., G. Shutinoski and G. Arsov, "A Novel Quasi-Diphone Inventory Approach to Text-To-Speech Synthesis", MELECON '08, Ajaccio, France, May 5-7, 2008.
[10] Black, A. W. and Lenzo, K. "Optimal Utterance Selection for Unit Selection Speech Synthesis Databases", International Journal of Speech Technology, Vol. 6, p. 357–363, 2003.

[11] Lambert T., A. Breen, "A Database Design for a TTS Synthesis System Using Lexical Diphones", INTERSPEECH 2004, Jeju Island, Korea, Oct 4-8, 2004.

[12] François H., O Boëffard, "Design of an Optimal Continuous Speech Database for Text-to-Speech Synthesis Considered as a Set Covering Problem", Eurospeech 2001, Aalborg, Denmark, Sep 3-7, 2001.

[13] Bozkurt B., O. Ozturk, T. Dutoit, "Text Design for TTS Speech Corpus Building Using a Modified Greedy Selection", Proc. of Eurospeech 2003, Geneva, Switzerland Sep 1-4, 2003.

[14] Бојковска С., Л. Минова-Ѓуркова, Д. Пандев и Ж. Цветковски, Општа Граматика на Македонскиот Јазик, Просветно Дело, 2008.

[15] Friedman V., "Macedonian", SEELRC, Chapel Hill, USA, Aug 1-10, 2001.

[16] Gerazov B., Z. Ivanovski, "Diphone Analysis of the Macedonian Language for the Purpose of Text-to-Speech Synthesis", ICEST 2009, Veliko Tarnovo, Bulgaria, Jun 25 – 27, 2009.

 TABLE II

 Q-DIPHONES INCLUDED IN THE UNIT INVENTORY

1 qn	51 бо	101 ŕe	151 30	201 кв	251 нж	301 пф	351 ту	401 хн
2 qw	52 бр	102 ѓи	152 зр	202 ке	252 нз	302 пх	352 тф	402 xo
3 qв	53 бу	103 ѓн	153 зу	203 ки	253 ни	303 пш	353 тх	403 xp
4 qж	54 BQ	104 ŕo	154 sq	204 кл	254 нл	304 pw	354 тш	404 xy
5 qз	55 BW	105 ŕy	155 sa	205 км	255 но	305 pa	355 ќа	405 цq
6 qл	56 ва	106 en	156 ѕв	206 кн	256 нр	306 рв	356 ќв	406 цw
7 qљ	57 ве	107 ew	157 se	207 књ	257 нс	307 pe	357 ќе	407 ца
8 q.M	58 вж	108 ea	158 ѕи	208 ко	258 ну	308 рж	358 ќи	408 цв
9 qн	59 вз	109 ев	159 sp	209 кр	259 нф	309 рз	359 ќн	409 це
10 qњ	60 ви	110 еж	160 sy	210 кс	260 нх	310 ри	360 <i>к</i> о	410 ци
11 qp	61 вј	111 ез	161 иn	211 ку	261 нш	311 pj	361 ќу	411 цл
12 qc	62 вл	112 еи	162 иw	212 кш	262 ња	312 рл	362 yn	412 цм
13 qφ	63 вљ	113 ej	163 иа	213 лn	263 ње	313 рм	363 yw	413 цн
14 qx	64 вм	114 ел	164 ив	214 ла	264 њи	314 рн	364 ya	414 цо
15 qш	65 вн	115 ељ	165 ие	215 лв	265 њо	315 po	365 ув	415 цр
16 we	66 во	116 ем	166 иж	216 лж	266 њс	316 pc	366 ye	416 цу
17 wи	67 вр	117 ен	167 из	217 лз	267 њу	317 py	367 уж	417 чq
18 wj	68 ву	118 ењ	168 иј	218 лм	268 on	318 pφ	368 уз	418 чw
19 an	69 rq	119 eo	169 ил	219 лн	269 ow	319 px	369 уи	419 ча
20 aw	70 rw	120 ep	170 им	220 лњ	270 oa	320 рш	370 yj	420 чв
21 ав	71 га	121 ec	171 ин	221 ло	271 ов	321 cq	371 ул	421 че
22 ae	72 гв	122 ey	172 ињ	222 лс	272 oe	322 cw	372 ум	422 чи
23 аж	73 ге	123 еф	173 ио	223 лу	273 ож	323 ca	373 ун	423 чј
24 аз	74 гз	124 ex	174 ир	224 лф	274 03	324 св	374 уњ	424 чл
25 аи	75 ги	125 еш	175 ис	225 лх	275 ои	325 ce	375 yo	425 чм
26 aj	76 гл	126 жа	176 иу	226 лш	276 oj	326 си	376 yp	426 чн
27 ал	77 rm	127 жw	177 иф	227 ља	277 ол	327 cj	377 yc	427 чњ
28 аљ	78 гн	128 жа	178 их	228 љи	278 ољ	328 сл	378 yy	428 чо
29 ам	79 гњ	129 жв	179 иш	229 љо	279 ом	329 см	379 yφ	429 чу
30 ан	80 го	130 же	180 jw	230 љу	280 он	330 сн	380 yx	430 µa
31 ањ	81 гр	131 жи	181 ja	231 MQ	281 оњ	331 co	381 уш	431 џв
32 ao	82 ry	132 жј	182 јв	232 MW	282 op	332 cp	382 φq	432 µe
33 ap	83 да	133 жл	183 je	233 ма	283 oc	333 cy	383 ¢ w	433 џи
34 ac	84 дw	134 жм	184 јж	234 мв	284 oy	334 сф	384 ¢ a	434 µm
35 ay	85 да	135 жн	185 j3	235 ме	285 oq	335 cx	385 фе	435 µo
36 аф	86 дв	136 жо	186 ји	236 ми	286 ox	336 сш	386 фи	436 µy
37 ax	87 де	137 жр	187 јл	237 мј	287 ош	337 тq	387 фл	437 шw
38 аш	88 дж	138 жу	188 јљ	238 мл	288 пq	338 TW	388 фн	438 ша
39 бq	89 дз	139 3q	189 јм	239 мн	289 пw	339 та	389 фо	439 шв
40 бw	90 ди	140 sw	190 јн	240 мњ	290 па	340 тв	390 фр	440 ше
41 ба	91 дј	141 за	191 jo	241 мо	291 пе	341 те	391 φc	441 ши
42 бв	92 дл	142 зв	192 jp	242 мр	292 пи	342 ти	392 φy	442 шј
43 бе	93 дљ	143 зе	193 jc	243 MC	293 пј	343 тј	393 фш	443 шл
44 бз	94 дм	144 зж	194 jy	244 му	294 пл	344 тл	394 xq	444 шм
45 би	95 дн	145 зи	195 јф	245 мф	295 пљ	345 тљ	395 xa	445 шн
46 бј	96 дњ	146 зј	196 jx	246 мш	296 пн	346 тм	396 хв	446 шњ
47 бл	97 до	147 зл	197 јш	247 нw	297 по	347 тн	397 xe	447 шо
48 бљ	98 др	148 зљ	198 кq	248 на	298 пр	348 то	398 хи	448 шр
49 бм	99 ду	149 зм	199 кw	249 нв	299 пс	349 тр	399 хл	449 шу
50 бн	100 ŕa	150 зн	200 ка	250 не	300 пу	350 тс	400 xm	