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Sadržaj – Metoda konačnih razlika (FDM) omogućava brzu i efikasnu analizu i simulacije 
elektromagnetskih polja, što je posebno pogodno za CAD programiranje i dizajn. Mana 
metode konačnih razlika u frekvencijskom domenu (FDM-FD) je nedovoljno tačna 
diskretizacija razdvojnih površi dielektrika različitih permitivnosti, a uzrok je neizbežna 
takozvana stepeničasta aproksimacija. U ovom radu je dat pregled i međusobno poređenje 
nekih veoma atraktivnih numeričkih koncepata koji omogućavaju efikasan tretman razdvojnih 
dielektričnih površi. Takozvane poboljšane FD šeme omogućavaju izvođenje FD formula u 
okolini razdvojnih površi, uz drugi red tačnosti. Metode transformacije koordinata, kao što je 
strukturno vezana metoda konačnih razlika, omogućavaju da postupak FD diskretizacije prati 
lokalnu geometriju analizirane strukture. Jedan drugi pristup, koji je predložio autor rada, 
dovodi do FD formula veće tačnosti od često korišćenih poboljšanih FD formula. 

 
Abstract – The finite difference method (FDM) enables electromagnetic field calculations and 
simulations at reduced time, what is particularly suitable for CAD software implementations.  
Frequency domain based FDM (FDM-FD) discretization of structures with the permittivity 
step at the interface between two dielectric regions suffers from reduced accuracy due to the 
inevitable staircase approximation. In this paper a few very attractive numerical concepts that 
allow accurate FD treatment of dielectric interfaces are reviewed and compared. So-called 
improved FD-schemes enable the derivation of FD formulas providing true accuracy of the 
second order. In co-ordinate transformation methods, such as the structure related FDM, the 
discretization procedure exactly matches the local geometry of the structure under analysis. 
Another approach, proposed by the author, results in the derivation of FD formulas with 
better accuracy then often-used improved FD formulas. 
 
Keywords – Numerical modeling, Finite difference method, Electromagnetics, Photonics. 
 
 

1. INTRODUCTION 
 

The finite-difference method (FDM) is widely used 
numerical method in electromagnetics, [1,2]. FDM has been 
extensively used in photonics and optoelectronic design in 
mode solvers, in beam propagation methods (BPMs), [3-5], 
as a standard method of choice in simulation programs or 
computer-aided design (CAD) tools where shortened 
simulation time is mandatory. BPM techniques available 
include both frequency and time domain approaches for 
analyzing optical waveguides and waveguide-based 
optoelectronic devices. CAD applications based on the 
frequency domain FDM (FD-BPM) have become particularly 
an attractive approach because of the simplicity of FDM 
implementation and the sparsity of FDM resultant matrix. 

 
Most conventional implementations of FD-BPM for 

structures with constant cross-section in a rectangular co-
ordinate system are characterized by low-order truncation 
errors. Difference equations obtained by standard centered 
differencing in two dimensions in homogeneous regions are 

second-order accurate, n = 2, or O(h2), where h is the FD 
mesh size. Near the step-index dielectric interfaces, accuracy 
usually drops to n¡ 1, and near dielectric corner points 
difference equations are (n¡ 2)th-order accurate, resulting 
with (n¡ 1)th-order of accuracy of the modal index and 
modal electromagnetic field. This deficiency of FDM, known 
as the inevitable staircase approximation of the dielectric 
boundaries, has pushed most of the researches to concentrate 
either on the development of the new numerical approaches, 
or the solution techniques employed to solve the large matrix 
equation sets that usually result during the FD discretization 
procedure.  

 
Over the last two decades, certain research efforts have 

been spent on increasing understanding of the effects of 
truncation error near the step-index dielectric interfaces and 
increasing the accuracy of the employed FD discretization 
procedure, both in semi-vectorial and full-vectorial FD-BPM 
formulations. The starting point was Stern’s work [6] where 
the concept of a semi-vectorial mode, which neglects minor 
field components (quasi-TE and quasi-TM cases), has been 
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introduced, resulting in O(h0) truncation error. A few years 
latter, Vassallo [7] proposed an improved three-point FD 
formulation for the semi-vectorial case providing O(h) 
accuracy with arbitrary placement of dielectric interfaces 
between FD grid lines. Yamauchi et al. [8-10] improved 
Vassallo’s approach to give O(h2) accuracy regardless of 
interface position. Chiou et al. [11] further improved the 
accuracy, in the semi-vectorial case, to O(h3) for arbitrarily 
positioned interfaces and O(h4) when interfaces lie on nodes 
or are centered between them. Chiang et al. [12] generalized 
Vassallo’s and Yamauchi’s approach to full-vectorial case to 
give O(h2) accuracy for oblique, even curved step-index 
boundaries. Approaches [11,12] have been followed by 
others, see for example Wykes et al. [13] where an 
improvement was proposed for structures containing fine 
features, such as quantum-well structures and ARROW-C 
waveguides. Hadley [14,15] derived highly accurate FD 
formulas, assuming TE polarization, with truncation error in 
the uniform region O(h4) to O(h6) depending on the type of 
grid employed, and up to the O(h5) near dielectric interfaces 
under certain grid-interface conditions. The co-ordinate 
transformation approaches reformulate FDM in non-
orthogonal, so-called structure related (SR) co-ordinate 
systems, see for example [16-18].  Promising approach has 
been very recently reported in [19], where the truly two-
dimensional full-vectorial FDM approach has been proposed 
for the electromagnetic field discretization near dielectric 
interfaces featuring with O(h4), and higher, truncation error.  

 
The aim of this paper is to review and compare those 

recently developed FDM and FD-BPM methodologies. It is 
noteworthy to mention that the brief summary given in this 
introductory section does not cover all approaches proposed 
in the literature during the last decade. However, in author’s 
opinion, referred approaches have significantly impacted the 
research and CAD manufacturing in photonics and 
optoelectronics already, and have made advancements in 
commercial and in-house tools based on FDM and FD-BPM 
techniques. Namely, these are: 1) improved formulas FDM 
approach (Yamauchi, Chiou, Chiang); 2) highly accurate 
Hadley’s approach which can be used for benchmark 
purposes; 3) structure-related FDM coordinate transformation 
approach; together with the author’s  recently proposed two-
dimensional full-vectorial FD formulas formulation. In the 
next section these concepts are briefly explained.  

 
 

2.  FDM MODELING OF DIELECTRIC INTERFACES 
 

Let us start from the vector Helmholtz’s equation, which 
in linear and isotropic media, in frequency domain, in terms 
of transverse electric field , has a well-known form, 
 

      (1) 

 
where , we assume that n 6= n(z), an 
operator  is replaced as ; the similar equation 
states for the transverse magnetic field . The BPM 
methods are developed under the paraxial approximation of 
(1), [3-5], 
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where ,  and  denotes a 
reference refractive (modal) index. Equation (2) is known as 
the one-way paraxial wave equation, or Fresnel’s equation. 
Note that in TEM case (1) simplifies to 
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and within the 2D static approximation , so we have 
 

 rt

·
1

n2
rt(n

2Et)  ̧           (4) 

 
The conventional FDMs schemes are obtained by directly 

discretizing eqs. (1-4) and in the case of the transverse plane 
step-index devices they are generally arranged to avoid the 
discontinuity problem, for example by assuming the graded-
index approximation. The improved FD formulas approaches 
take into account boundary conditions for the field and its 
derivatives near the dielectric interfaces. 
 
2.1. Improved FDM formulas formulation 

 
We will focus our attention on the rectangular FD meshes 

and improved full-vectorial FD formulation given in [12], 
where optical waveguides with step-index profiles have been 
treated for oblique even curved interfaces. Derivation 
procedure employs the Taylor series expansion and matching 
the interface conditions of the field components. The 
derivation methodology for the transverse electric field , 

 or , will be briefly presented here only. 
 

 
 

Figure 1. Cross-section of a linear oblique interface 
discretized with a uniform grid in x and y directions. 

 
In the case of the linear oblique interface between two 

dielectric regions, Fig. 1, a task is to derive the relationship 
between the fields in two neighbouring grid points   

and  taking in the account all grid points around 

centered point .  and  , Fig. 1, represent the 
fields at just to the left and right sides of the interface, 
respectively. Taylor series expansion for  in terms of 

 and its derivatives is 

698



  

            (5) 

 
By successively differentiating of (5) with respect to  or , 
one could arrange a matrix equation 
 

          (6) 
 
where  is a vector assembled of ,   and their 
derivatives in respect to  and ,   is a vector 
assembled of ,  and their derivatives in respect to 

 and ,  is a resulting square matrix in terms of 
 and , and H.O.T. denotes “higher order terms”. In a 

similar fashion, starting from Taylor series expansion for 
, we arrive to the next matrix equation 

 
       (7) 

 
By introducing local co-ordinate system , unit vectors 
(n̂; t̂) shown in Fig. 1, in a matrix form, then linking vectors 

 and  via the interface conditions, again in a matrix 
form, and combining these matrix equations we obtain 
 

 
 

           (8) 
 

where [[M ]]RC and  [[M ]]CL are local co-ordinates 
transformation matrices and [[M ]]RL is a matrix where 
boundary conditions are packed, all matrices being square.  
The crucial point in the improved FD formulas approaches is 
deriving and packing a matrix . In the case of the 
transverse electric field, in terms of normal  and tangential 

 field components, boundary conditions are 
 

 

 

 

 

 

 

 

 

        (9) 

 
and so on, where  and  are the permittivities on the left-
hand and right-hand sides of the interface, respectively. The 
same conditions (9) were acquired and used in multiple of 
papers in the derivation of improved FD formulas [7-15]. 
Note that (9) represent exact boundary conditions and can be 

used in the electrostatic case as well, with approximation 
.  Improved FD formula (8) is with O(h2) truncation 

error. Higher accuracy is difficult to obtain because of 
singular problems with matrix inversion in (8), [12]. In [11] 
the same approach was used with a generalized Douglas 
scheme to improve the accuracy to  for arbitrarily 
positioned interfaces and  where interfaces lie on nodes 
or are centered between them, however for structures with 
rectangular cross-sections and within the semi-vectorial 
formulation only. 
 
2.2. Hadley’s FDM formulation 
 

In [14,15] Hadley utilized 2D solutions of the 
Helmholtz’s equation in cylindrical co-ordinates. This 
approach resulted in the tremendous increase in accuracy, 
however with increase in algebraic and numerical efforts in 
formulas derivation and implementation.  Three distinct cases 
of uniform regions, dielectric interfaces and dielectric corners 
are handled separately and these derivations are finally 
incorporated into a TE mode waveguide modeling tool.  
 

Hadley started by assuming a uniform grid in both 
transverse directions, and from the TE eigenmode-solving 
form of (1) in polar co-ordinates , in terms of the 
transverse magnetic field ,  

 

       (10) 

 
with the general series solution for ,  
 

       (11) 

 
where  denotes the th order Bessel function of the 
first kind and . FD formula is evaluated 
under (10) and (11) over nine-point stencil formed from the 
centered grid point and 8 neighbouring FD grid points, giving 
O(h6) order of the truncation error (O(h4) for non-uniform 
grid) in homogeneous regions. An intrinsic drawback of this 
approach is a need for additional computation of multitudes 
of Bessel functions in the final FD formula.  
 

The derivation of similar FD formulas on a dielectric 
interface is even more demanding because of the 
discontinuities of higher field derivatives on the interface. 
Cumbersome formulas was derived in [14] giving O(h5) 
order of the truncation error for the uniform grid and points 
placed exactly at the dielectric interface, finally resulting in 
O(h6)-order accuracy for the modal index and O(h4)-order 
accuracy for the value of the small field component for 
problems containing no dielectric corners, and somewhat 
lower order of accuracy for realistic problems including 
corners (e.g. rib waveguides eigenmode analysis). 

 
Although Hadley’s FD formulas are rather tedious to 

derive and implement, they have been incorporated in the 
improved accuracy eigenmode solvers for benchmark 
purposes in some waveguide simulations (e.g. buried and rib 
waveguides with rectangular cross-sections). 
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2.3. Structure-related FDM formulation 
 

Successful approach to eliminate non-physical scattering 
due to the staircasing effect in FD discretization of oblique 
dielectric interfaces in rectangular co-ordinate system  is the 
use of the co-ordinate transformation methods, such as 
structure related (SR) FD-BPM, [8-10]. SR co-ordinate 
systems, such as tapered, oblique, bi-oblique co-ordinate 
systems, naturally follow the local geometry of the structure 
under analysis. Eqs. (1-4) can be rewritten in any orthogonal 
or non-orthogonal transverse co-ordinate system. The general 
theory of the SR non-orthogonal co-ordinate systems was 
given in [16]. As an example, in the case of a tapered co-
ordinate system  in the transverse plane, in which 

, , , where the origin of tapered 
co-ordinate system  is given as , 
the scalar paraxial wave equation, in the uniform regions and 
in terms of the electric field , can be derived as 
 

 
 

          (12) 

 
In (12) a slowly-varying scalar envelope approximation of 
the electric field  and the refractive index 

 are functions of a tapered co-ordinates  and .  
Derivation details of  (12) can be found in [16,17]. 

 
In spite being scalar, the resulting SR FD-BPM algorithm 

allows simulations with noticeably reduced numerical noise 
and shortened simulation time. The non-orthogonal co-
ordinate FD-BPM has been applied to the analysis of 
structures with oblique, bi-oblique, tapered, and tapered-
oblique cross-sections in the transverse plane.  

 

 
 

Figure 2.  Discretization of the rib waveguide with sloped 
walls in the transverse plane, by using “ROTOR” – rectangu-
lar-oblique-tapered-oblique-rectangular - FD mesh, [17,18]. 
 

In the “ROTOR” scheme, Fig. 2, rectangular, oblique and 
tapered co-ordinate systems are utilized together. This 
scheme shows that rectangular can be combined with other 
non-orthogonal co-ordinate systems. In general, SR FD-BPM 
algorithms allow considerable relaxing of the mesh size, 
offering savings in both computational time and memory.  

2.4. Two-dimensional full-vectorial FDM formulation 
 

FD formulas proposed in [19] have been derived under 
the power series expansion of the electric field components in 
respect to co-ordinates  and . The 2D static field (e.g. 
electrostatics), TEM field (e.g. transmission line field, 

, ) and TM mode field ( ) have been 
considered. In linear and isotropic source-free media, by 
using Maxwell's equations scalar forms, 
 

        (13) 

 
the transverse electric field components can be expressed as  

 
   (14) 

 
  (15) 

 
Assuming that the dielectric interface has no charge, we 

can apply the integral form of the Maxwell’s eqs., 
 

        (16) 

 
on the Gaussian surface  and contour  enclosing two 
subsequent FD grid points placed close to the interface. If the 

 and  component of the field are expanded in (14) and (15) 
up to the 5th order, FD-formulas for ,  and their first, 
second... derivatives with O(h5) accuracy can be derived, see 
[19] for details. Performed test-computations in simple 
electrostatic and full-vectorial FD-BPM field and eigenmode 
test-simulations have demonstrated accuracy and stability of 
derived FD formulas. These results have been expected, as a 
consequence of the true two-dimensional FD approach. 
Results obtained in simple TM mode field FD-BPM test-
simulations of buried dielectric waveguides are shown in Fig. 
3. It can be seen that approach proposed in [19] exhibits a 
superior behavior in comparison to other improved FD 
formulas approaches. 
 

 
 
Figure 3. Modal index versus mesh size for buried 
waveguide, [19], cross-section and simulation parameters 
given in insets of figure, calculated by using different FDM 
approaches.  
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Table 1. Summary and comparison of discussed improved FD schemes. 
 
 

FDM Scheme Formulation Accuracy Advantages Deficiencies 
Improved – 
Yamauchi et al. [8,9] Semi-vectorial O(h2) ¡ O(h4)  Require special positions of the 

interface and FD grid 
Improved – 
Yamauchi et al. [10] Full-vectorial O(h2)  Included the graded-index 

approximation 
Improved – 
Chiou et al. [11] Semi-vectorial O(h3) ¡ O(h4) Accurate Only for rectangular cross-

sections 
Improved – 
Chiang et al. [12] Full-vectorial O(h2) Applicable to oblique and 

curved interfaces 
Difficult to improve the 
accuracy 

Benchmark improved – 
Hadley [14,15] Full-vectorial O(h4) ¡ O(h6) 

Very accurate for mode solvers, 
can be used in benchmark code 
simulations 

Rather tedious FD formulas; a 
need to calculate Bessel 
functions; only for TE case and 
rectangular cross-sections 

Structure-related – 
Djurdjevic et al.[17,18] 

Scalar, Semi-
vectorial O(h2) Enable accurate simulations 

with reduced computer time 
Analytically complex, full-vec-
torial formulation does not exist 

Improved – 
Djurdjevic [19] Full-vectorial O(h4) and higher Very accurate; true 2D; easy to 

incorporate in a code Still under research 

 
 

3.  CONCLUSION 
 

A few attractive numerical concepts that allow accurate 
FD treatment of dielectric interfaces are reviewed and 
compared. So-called improved FD formulas approach has 
become a standard in CAD simulations in optoelectronics and 
photonics, although some other approaches are available as 
well. The comparison of discussed methods is given in Table 
1, emphasizing their intrinsic advantages and deficiencies. 
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