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Sadržaj – Efikasnost i uspešnost tehnika istraživanja podataka mnogo zavise od kvaliteta podataka koji se koriste za izradu 
modela koji će se koristiti. To čini kvalitet podataka važnim pitanjem u praksi. Činjenica da šum i u trening i u test podacima 
može negativno uticati na performanse algoritama mašinskog učenja opravdava povećanje istraživačkih napora posvećenih 
istraživanju robusnih i tačnih algoritama detekcije šuma. Ovaj rad prezentuje unapređenu metodologiju saturcionog filtra za 

detekciju šuma u domenu detekcije grešaka u softveru. Na osnovu analize rezultata, preporučuje se modifikovani filtar koji vrši 
eliminaciju šuma po slojevima. Filtrirani podaci su korisćeni za treniranje robusnog klasifikatora na bazi  C4.5 stabla 
odlučivanja, a rezultati upoređeni sa rezultatima dobijeni3m bez filtriranja. Performanse klasifikacije se povećavaju sa 

eliminisanjem šuma iz trening podataka, pokazujući da je preporučeni saturacioni filtar sposoban da eliminiše šum.   
Abstract - The effectiveness and efficiency of data mining techniques largely depends on the quality of the data used to build 
the data mining models employed. This makes the quality of the data a significant issue in practice. The fact that noise in both 

training and test data set can adversely affect the performance of machine learning algorithms justifies the increasing research 
effort dedicated to the investigation of robust, accurate noise detection algorithms. The paper presents an application of a 

saturation filter methodology to detect noisy examples in the domain of software fault detection. Based on the analysis of the 
results, a modified saturation filter is proposed, which performs stratified noise elimination. Filtered data is used to train 

robust C4.5 decision-tree classifiers and the prediction results are compared to those achieved by classifiers trained with noisy 
data. The classifier performance is increased when noise is eliminated from the dataset, showing that the proposed saturation 

filter is able to eliminate the noise and preserve the data relevant to the concept. 
 
 
1. INTRODUCTION 
 
Advances in technology over the past decades have resulted 
in production of large amounts of data containing all sorts of 
potentially useful information. Extracting the information of 
interest from this large bulk is by no means a trivial task. In a 
strive to use the information gathered, data mining techniques 
have come to be employed in all areas of human activity. 
They are used to solve a variety of problems in fields such as 
business, finance, software quality [3], network intrusion 
detection and Internet search engines design. The use of data 
mining techniques has led to the automation of many 
processes and procedures that once solely depended on 
human expertise, leading to more cost-effective and time-
effective processes.  
The effectiveness and efficiency of data mining techniques 
largely depends on the quality of the data used to build the 
data mining models employed. This makes the quality of the 
data a significant issue in practice. Formally, the data is 
considered clean if it incorporates only the data stemming 
from the target concept, which the data mining techniques are 
trying to learn. All other data obscure the target concept and 
can be considered noise. In practice, and in this work, the 
term noise is used in a broader sense [4] denoting all 
examples that do not follow the same model as the rest of 
data. This definition “includes not only erroneous data but 
also surprising veridical data” [5]. Such data items are 
referred to as outliers.  
Recently, several studies have been carried out on outlier 
detection in the data mining community. These studies 
broadly classify outliers into four categories. The first 
category is distribution-based outlier, which is defined based 

on the probability distribution. A standard distribution is used 
to fit the dataset. For example, a Gaussian mixture model is 
used to present the normal behaviors of the dataset [6], and 
each data item is given a score according to the changes in 
the model. High score indicates a high probability that the 
data item is an outlier. Distance-based outlier is the second 
category, which was presented by Ramasway et al. [7]. 
Outliers are identified by this top k data points after all data 
points in dataset are ranked by the distance to their kth 
nearest neighbor. Ramasway et al. gave effective algorithms 
for mining top k outliers. Jiang et al. [8] addressed cluster-
based outlier detection, which is the third category. They 
considered the observations in small clusters as outliers. 
However, He et al. [9] proposed another technique, which 
found outliers based on clustering algorithm by incorporating 
semantic knowledge such as the class label of each data point 
in the dataset. From the class information viewpoint, the 
observations whose class labels are different from that of the 
majority of the cluster are considered semantic outliers. In a 
recent study [11], an outlier was defined from software 
engineering point of view by an expert in a clustering 
approach. For a given cluster, if a majority of software 
modules are classified as not fault-prone, the expert can make 
an educated assessment that the few fault-prone modules in 
the cluster are likely noisy data items and could be eliminated 
from the software measurement data. The forth category is 
rule-based outlier, [10]. An observation can be assigned to 
one and only one rule. Each rule is classified as FP (fault-
prone) or NFP (not fault-prone), based on the probability of 
the instances associated with that rule being FP or NFP. If an 
instance is associated with a rule that has a different class 
label (FP or NFP) then that instance is likely to be an outlier 
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candidate. The work presented in this paper builds on the 
work presented in [1], where each single data item that 
contributes largely to the complexity of the learned 
hypothesis is considered an outlier. 
The presence of noisy data in the training data set has been 
shown to hurt the predictive accuracy of data mining 
classifiers [3].  
Generally speaking, there are three ways that data mining 
algorithms can handle noise. First, algorithms can be 
designed to be robust in the presence of noise. In this case, no 
specific noise detection steps are necessary; accuracy of the 
classifier on test data will not be significantly affected by the 
noise in the training data set. In the presence of significant 
amounts of noise, however, performance of these techniques 
may suffer regardless. In the second case, polishing 
techniques are designed to detect and correct noise in the data 
prior to training of the classifier [12]. Finally, noise can be 
detected and removed from the data prior to training of the 
classifier by using filtering techniques [3]. Noise handling m 
the second and third cases is a separate and distinct process 
from training the final classifier, with the major difference 
being that the second process will correct the cause of the 
noise, while the third will simply remove the noisy instance 
from the data set. The second method is preferred when the 
training data set has a small number of observations. In this 
case, the elimination of any observations will significantly 
reduce the size of the training data set with potentially 
adverse effects on the final classifier. The technique 
described in this paper fall in the third general class of noise 
detection algorithms. 
The rest of this paper is organized as follows: Section 2 
presents the methodology. Experimental evaluation is 
described in Section 3. Finally, conclusions are drawn in 
Section 4. 
 
2. SATURATION FILTER 
 
The saturation approach to noise filtering has its theoretical 
foundation in the saturation property of training data [14]. 
The algorithm, described in detail in [13], is outlined here for 
the sake of completeness. The description is based on that of 
the authors of the approach, presented in [2]. 
Suppose that a complexity measure c is defined and that for 
any hypothesis H its complexity c(H) can be determined. 
Based on this complexity measure, for a training set E one 
can determine the complexity of the least complex hypothesis 
correct for all the examples in E; this complexity, denoted by 
g(E) is called the CLCH value (Complexity of the Least 
Complex Hypothesis, correct for all the examples in E). 
In [24] the authors show that if E is noiseless and saturated 
(containing enough training examples to find a correct target 
hypothesis), then g(E) < g(En), where En = E ∪ {en} and en is 
a noisy example for which the target hypothesis is not 
correct. The property g(E) < g(En) means that noisy examples 
can be detected as those that enable CLCH value reduction. 
The approach in an iterative form is applicable also when En 
includes more than one noisy example. 

It must be noted that the saturation property of a training set 
is the main theoretical condition for the presented filter. In 

practice many domains have a restricted number of training 
examples and hence it can be assumed that these domains do 
not satisfy the saturation condition. Notice, however, that the 
described algorithm is applicable without changes also in this 
case. The reason is that for some sub-concept of the domain 
there may still be enough training examples so that this 
subpart of the domain is saturated; hence, a sub-theory 
description is induced by the learner whereas all other 
examples are eliminated since the learner will treat them as 
being erroneous or exceptions of the sub-theory description 
being learned. 
The greatest practical problem of the saturation filter is the 
computation of the CLCH value g(E) for a training set E. In 
rule-based induction, the hypothesis complexity measure 
c(H) can be defined as the number of attribute value tests 
(literals) used in the hypothesis H. In this case, the 
corresponding g(E) value can be defined as the minimal 
number of literals that are necessary to build a hypothesis that 
is correct for all the examples in E. 
Suppose that the training set is contradiction free (there are 
no examples that differ only in their class value), and that the 
set of literals L defined in the hypothesis language is 
sufficient for finding a hypothesis H which is correct for all 
examples in E. Then the necessary and sufficient condition 
for a subset L' ⊆ L to have this same property is that for every 
possible example pair, such that the first example in the pair 
is a positive example from E and the second one is negative, 
there must be at least one literal in L' which covers the pair. 
A literal covers a pair if it is true for the positive and false for 
the negative example in the pair. This fact enables that the 
g(E) value defined by the minimal number of literals can be 
computed by any minimal covering algorithm over the set of 
example pairs. The ILLM heuristic minimal covering 
algorithm, presented here as Procedure 1 in Figure 1, is used. 
The advantages of this approach are: g(E) computation does 
not require the actual construction of a hypothesis and the 
g(E) value can be determined relatively fast. This approach 
presents the heart of the saturation noise filtering method 
used in this work. 
The procedure starts with the empty set of selected literals L' 
(step 1) and the set U' of yet uncovered example pairs equal 
to all possible pairs of one positive and one negative example 
from the training set (step 3), for which in (step 2) weights 
v(ei,ej) have been computed. The weight of a pair is high if 
the pair is covered by a small number of distinct literals from 
L. The meaning of this measure is that for a pair with a large 
weight it will be more difficult to find an appropriate literal 
which will cover this pair than for a pair with a small weight. 
Each iteration of the main algorithm loop (steps 4 -11) adds 
one literal to the minimal set L' (step 9). At the same time, all 
example pairs covered by the selected literal are eliminated 
from U' (step 10). The algorithm terminates when U' remains 
empty. In each iteration, the algorithm tries to select the 
literal, which covers a maximal number of 'heavy' example 
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pairs (pairs with large weight). This is done so that a pair 
(ea,eb) is detected which is covered by the least number of 
literals (step 5).  

 
Figure 1 Heuristic minimal covering algorithm 

 
At least one of the literals from the set Lab with literals that 
cover this pair (step 6), must be included into the minimal set 
L'. To determine which literal, weight w(l) is computed for 
each of them (step 7) and the literal with the maximal weight 
is selected (step 8). The weight of a literal is the sum of the 
weights of example pairs that are covered by the literal. 
Algorithm 1 in Figure 2 presents the saturation filter. It 
begins with the reduced training set E' equal the input 
training set E (step 1) and an empty set of detected noisy 
examples A (step 2). The algorithm supposes that the set of 
all appropriate literals L for the domain is defined. U 
represents a set of all possible example pairs where the first 
example in the pair is from the set of all positive training 
examples P' in the reduced set E', and the second example is 
from the set N' of all negative examples in the reduced train-
ing set E'. The algorithm detects one noisy example per 
iteration. The base for noise detection are weights w(e) which 
are computed for each example e from E'. Initially all w(e) 
values are initialized to 0 (step 6). At the end, the example 
with maximum weight w(e) is selected (step 17). If the 
maximum w(e) value is greater than the parameter εh 
predefined value then the corresponding training example is 
included into the set A (step 19) and eliminated from the 
reduced training set E' (step 20). The new iteration of noise 
detection begins with this reduced training set (steps 3-22). 
The algorithm terminates when in the last iteration no ex-
ample has w(e) greater than εh. Noisy examples in A and the 
noiseless E' are the output of the algorithm. 
Computations in each iteration begin with the search for the 
minimal set of literals L' that cover all example pairs in U 
(calling Procedure 1 in step 5). A pair of examples is covered 
by a literal I if the literal is evaluated true for the positive 
example and evaluated false for the negative example in the 
pair. This step represents the computation of the g(E') value. 
Next, a heuristic approach is used to compute weights w(e) 
that measures the possibility that the elimination of an 
example e would enable g (E') reduction.  

 
Figure 2 Saturation filter algorithm 

Weights w(e) are computed so that for every literal I from L', 
minimal sets of positive (P*) and negative examples (N*) are 
determined, such that if P* or N* are eliminated from E' then 
I becomes unnecessary in L'. This is done in a loop (steps 9-
12) in which every example pair is tested to determine if it is 
covered by a single literal I. If such a pair is detected (step 
10) then its positive example is included into the set P* and 
its negative example into the set N* (step 11). Literal 
elimination from L' presents the reduction of the g(E') value. 
If a literal can be made unnecessary by elimination of a very 
small subset of training examples, then this indicates that 
these examples might be noisy. In steps 14 and 15, the w(e) 
weights are incremented only for the examples which are the 
members of the P* and N* sets. The weights are incremented 
by the inverse of the total number of examples in these sets. 
Weights are summed over all literals in L'. Step 13 is 
necessary because of the imperfectness of the heuristic 
minimal cover algorithm. Namely, if some I ⊆ L' exists for 
which there is no example pair that is covered only by this 
literal (i.e., for which either P* = ∅ or N* = ∅), this means 
that L' is actually not the minimal set because L' \ {1} also 
covers all example pairs in U. In such case L' is substituted 
by L' \ {I}. 
The presented saturation filter uses the parameter εh, that 
determines noise sensitivity of the algorithm. The parameter 
can be adjusted by the user in order to tune the algorithm to 

Procedure 1: MINIMAL COVER 
Input: U (set of example pairs), L (set of literals) 
Output: L' (minimal set of literals) 
(1)  L' ← ∅ 
(2)  for every (ei,ej) ∈ U compute weights 
          v(ei,ej) = 1/z, where z is number of  literals l ∈ L that cover (ei,ej) 
(3)  U' ← U 
(4)  while U' ≠ 0 do 
(5)     select (ea,eb) 
             (ea,eb) ∈ U': (ea,eb) = arg max v(ei,ej), 
             where max is over all (ei,ej) ∈ U' 
(6)     Lab ← {l | l ∈ L covering (ea,eb)} 
(7)     for every l ∈ Lab compute 
             w(l) = Σ v(ei,ej), where sum is over all (ei,ej) ∈ U' covered by l 
(8)     select literal ls: ls = arg max w(l), where max is over all l ∈ Lab 
(9)     L'←L' ∪ {ls} 
(10)   U' ← U' \ {all (ei,ej)  covered by ls} 
(11) end while 

Algorithm 1: SaturationFilter(E)  
Input: E (training set), L (set of literals)  
Parameter: εh (noise sensitivity parameter)  
Output: A (detected noisy subset of E) 

(1)   E'  ← E   
(2)   A ← ∅ 
(3)   while E' ≠ ∅ do 
(4)      find U, set of all possible example pairs    for examples in E' 
(5)      call Proc.1 to find min. L', L' ⊆ L  so that ∀ (ei,ej) ∈ U ∃ l ∈ L'  

with the property l covers (ei,ej) 
(6)      initialize w(e) ← 0 for all e ∈ E' 
(7)      for every l ∈ L' do 
(8)         P* ← ∅, N* ← ∅ 
(9)         for every (ei,ej) ∈ U 
(10)          if (ei,ej) covered by l and no other literal from L' then 
(11)               P* ← P* ∪ {ei}, N* ← N ∪ {ej} 
(12)       end for 
(13)       if P* =  ∅ then L' ← L' \ {l}    and goto step 6 
(14)       if  |P*| < |N*|  
                for every e ∈ P* do 

*
1)()(

P
ewew +←

 

(15)       else  
                 for every e ∈ N* do 

*
1)()(

N
ewew +←

  

(16)    end for 
(17)    select example es: es = arg max w(e), 
              where max; is computed over all e ∈ E' 
(18)     if w(es) > εh then 
(19)        A ← A ∪{es} 
(20)        E '← E' \ {es} 
(21)     else exit with generated sets A and E' 
(22)  end while 
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the domain characteristics. Reasonable values are between 
0.25 and 2. For instance, the value 1.0 guarantees the 
elimination of every such example by whose elimination the 
set L' will be reduced for at least one literal. Lower εh values 
mean greater sensitivity of the algorithm (i.e., elimination of 
more examples): lower εh values should be used when the 
domain noise is not completely random, and when dealing 
with large training sets (since statistical properties of noise 
distribution in large training sets can have similar effects). In 
ILLM the default values of εh are between 0.5 and 1.5, 
depending on the number of training examples in the smaller 
of the two subsets of E: the set of positive examples P or the 
set of negative examples N. Default values for the saturation 
filter's noise sensitivity parameter εh are: 1.5 for training sets 
with 2-50 examples, 1.0 for 51-100 examples, 0.75 for 101-
200 examples, and 0.5 for more than 200 examples. 
The approach of selecting whether to eliminate the positive or 
the negative example in the pair based on the number of 
literals which cover them, proved to lead to biased behavior 
of the filter in the case study presented in the next section. 
The examples pertaining to the minority class will more 
likely form a smaller set of examples that can be eliminated 
to make the selected literal unnecessary. Thus, it is more 
likely that the condition in line 14 will cause the members of 
the minority class to be selected for removal from the dataset. 
As the case study shows, when the dataset is unbalanced the 
filter tends to concentrate only on removing the members of 
the minority class. Since this is not consistent with the 
preposition that the dataset incorporates random noise, the 
criterion for selecting whether the positive or negative set of 
examples should be eliminated has been revised to 
accommodate unbalanced datasets. Instead of merely 
comparing the sizes of the of P* and N* datasets, their values 
were normalized using the prior probabilities of an example 
being positive or negative and a scaling constant which was 
used as an additional parameter of the filter. The criterion in 
line 14 of Figure 2 has been changed to: 

np

NCP
ππ

|*||*|
<⋅

 

where:  
πp – prior probability of the sample being positive, 
 πn – prior probability of the sample being negative, 

C – scaling constant. 
 
3. EXPERIMENTAL EVALUATION 
 
The software metrics and quality data used on our study is 
that of a NASA software project, JM1, written in C++. 
The software metrics and quality data used in our study is 
that of a NASA software project, JM1, written m C++. The 
data was made available through the Metrics Data Program 
(MDP) at NASA, and included software measurement data 
and associated error (fault) data collected at the function / 
subroutine / method level. The dataset used consisted of 188 
modules, of which 55 modules contained errors (ranging 
from 1 to 13) while the remaining 414 modules were error-
free, i.e., had no software faults. A module with no faults was 
considered NFP, and FP otherwise. Each module in the JM1 
project was characterized by 21 software measurements: four 
McCabe metrics (Cyclomatic_Complexity, 
Essential_Complexity, Design_Comlexity, and Loc_Total); 
eight derived Halstead metrics (Halstead_Length, 

Halstead_Volume, Halstead_Level, Halstead_Difficulty, 
Halstead_content, Halstead_Effort, Halstead_Error_Est, and 
Halstead_Prog_Time); four metrics of Line Count 
(Loc_Executable, Loc_Comment, Loc_Blank, and 
Loc_Code_And_Comment); four basic Halstead metrics 
(Unmque_0perators, Unique_0perands, Total_0perators, and 
Total_0perands); and one metric for Branch Count. The 
quality of the modules was described by their Error Rate, i.e., 
number of defects in the modules, and Defect, whether or not 
the module has any defects. The latter was used as the class 
label. We only used the 13 primitive metrics and module 
class was used in the analysis, all of which were of 
quantitative type. The eight derived Halstead metrics were 
not used.      
The filtering has been applied a number of times, with 
different values of the filter sensitivity parameter. The 
datasets obtained in this way have been used to train the C4.5 
classifier. The classifier obtained for each dataset has then 
been evaluated both by 10 fold cross-validation and 
witholding half of the dataset as test dataset, which has not 
been used to train the classifier.   
The results obtained through cross-validation are presented in 
Table 2: 

Th Overall 
Error  

Type I 
Error 
(%) 

Type II 
Error 
(%) 

L
ea
ve
s 

N
od
es 

NFP 
elim. 
(%) 

FP elim. 
(%) 

0.5 9.7222 2.2556 100 4 7 0 94.5454 
0.6 9.7222 2.2556 100 4 7 0 80 
0.7 9.7222 2.2556 100 4 7 0 80 
0.8 9.7222 2.2556 100 4 7 0 80 
0.9 13.0719 5.2631 65 5 9 0 80 

1 14.3678 11.2781 24.3902 2 3 0 63.6363 
1.1 14.3678 11.2781 24.3902 2 3 0 25.4545 
1.2 18.0791 17.2932 20.4545 9 17 0 25.4545 
1.3 16.1111 12.7819 25.5319 10 19 0 23.6363 
1.4 16.2162 13.5338 23.0769 2 3 0 14.5454 
1.5 13.369 12.0300 16.6666 11 21 0 5.45454 
1.6 13.369 12.0300 16.6666 11 21 0 1.81818 
1.7 13.369 12.0300 16.6666 11 21 0 1.81818 
1.8 13.369 12.0300 16.6666 11 21 0 1.81818 
1.9 13.369 12.0300 16.6666 11 21 0 1.81818 

2 15.4255 14.2857 18.1818 8 15 0 0 
Table 2 Cross-validation results obtained for the dataset 

containing 188 instances. 
The results show the overall misclassification error of the 
classifier as well as the rate of misclassification of NFP 
modules as FP (Type I error) and misclassification of FP 
modules as NFP (Type II error). The latter being more 
serious misclassification. The table also shows the 
complexity of the generated C4.5 tree, listing the number of 
nodes in it as well as the number of leaves of the tree. The 
table also shows the portion of FP and NFP modules 
eliminated. 
The results obtained in this way showed that C4.5 models 
built based on the filtered dataset behaved better only when 
the filter removed a single instance from the dataset. It is 
unlikely that the dataset in question contains such a small 
amount of outliers. However the C4.5 algorithm did actually 
generate a much smaller decision tree for the case when 20% 
of FP modules have been eliminated from the dataset. Such a 
model is much less likely to be over-fitted than the one 
generated using the initial dataset.  
The experiments also showed a distinct inclination of the 
saturation filter to the removal of the FP instances, as 
member of a minority (FP) class. This is inconsistent with the 
hypothesis that the dataset contains random noise. Such bias 
of the filter cannot be attributed to the failure of the dataset to 
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incorporate the data allowing for the forming of complete and 
consistent hypothesis, rather it is likely that it is a result of the 
bias of the heuristic algorithm used to determine which data 
items should be eliminated.   
Separate test dataset based validation results are shown in 
Table 3. 

Thresh
old 

Overall 
Error 
(%)  

Type I 
Error (%) 

Type II 
Error (%) 

0.5 20.2128 10.60606 42.85714 
0.6 20.2128 10.60606 42.85714 
0.7 20.2128 10.60606 42.85714 
0.8 20.2128 10.60606 42.85714 
0.9 19.1489 7.575758 46.42857 

1 17.0213 21.21212 7.142857 
1.1 17.0213 21.21212 7.142857 
1.2 14.8936 3.030303 42.85714 
1.3 18.0851 9.090909 39.28571 
1.4 18.0851 24.24242 3.571429 
1.5 17.0213 7.575758 39.28571 
1.6 17.0213 7.575758 39.28571 
1.7 17.0213 7.575758 39.28571 
1.8 17.0213 7.575758 39.28571 
1.9 17.0213 7.575758 39.28571 

2 14.8936 7.575758 32.14286 
Table 3 Test dataset based results obtained for the dataset 

with 188 instances 
The approach of modifying the selection criterion by adding a 
scaling constant, which would be an additional parameter of 
the algorithm allowed for the possibility of making the filter 
more balanced, however it was then necessary to vary two 
parameters to achieve the desired results (the ratio of positive 
and negative examples eliminated should be in the vicinity of 
ratio of the prior probabilities of an example being positive or 
negative, respectively). For the threshold of Th = 0.3975 and 
the scaling constant C = 54.9 a a balanced filter was achieved 
by removing 13 positive and 31 negative examples. The 
overall, Type I and Type II error obtained through cross-
validation were 20.14, 22.55 and 14.29, respectively. The 
results for the test dataset were 21.28, 28.79 and 3.6. 
The model constructed for this dataset achieved significantly 
lower Type II error rate than the model built based on the 
initial dataset. Also the model is significantly simpler having 
only tree nodes instead of fifteen, which is a very desirable 
characteristic.  The test dataset validation results show that 
the model generated by the C4.5 algorithm, although much 
simpler, achieved far better Type II error rate, which is a 
significant result bearing in mind that the C4.5 algorithm is a 
robust algorithm designed to handle noise well. 
4. CONCLUSION 
 
In the work presented, the saturation filter approach to noise 
elimination has been applied to a domain it has not been used 
in before. Specifically, it has been applied to the software 
quality improvement domain. An inherent bias of the original 
approach has been observed and an approach devised to 
alleviate the problem. The modified saturation filter was able 
to exhibit balanced behavior and improve the performance of 
a robust algorithm such as C4.5.  
An improvement of the saturation filter approach has been 
proposed. The parameters of the new filter have been 
determined manually to achieve the desired behavior. 
Presently, there is no mechanism of adjusting the parameters 
of the filter automatically. This is the direction in which 
further research is possible. 
It has been demonstrated that the modified saturation filter is 
capable of achieving results in the case study at hand, 
something that the original saturation filter was not capable. 
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