
INFOTEH-JAHORINA Vol. 9, Ref. E-I-1, p. 418-422, March 2010.

 418

DETEKCIJA EKTREMNIH VREDNOSTI POMOĆU SATURACIONOG FILTRA U CILJU
POBOLJŠANJA KVALITETA SOFTVERA

SATURATION FILTER APPROACH TO OUTLIER DETECTION IN SOFTWARE QUALITY
IMPROVEMENT DOMAIN

Srdjan Sladojević, Igor Šetrajčić, Dubravko Ćulibrk, Fakultet tehničkih nauka, Novi sad

Sadržaj – Efikasnost i uspešnost tehnika istraživanja podataka mnogo zavise od kvaliteta podataka koji se koriste za izradu
modela koji će se koristiti. To čini kvalitet podataka važnim pitanjem u praksi. Činjenica da šum i u trening i u test podacima
može negativno uticati na performanse algoritama mašinskog učenja opravdava povećanje istraživačkih napora posvećenih
istraživanju robusnih i tačnih algoritama detekcije šuma. Ovaj rad prezentuje unapređenu metodologiju saturcionog filtra za

detekciju šuma u domenu detekcije grešaka u softveru. Na osnovu analize rezultata, preporučuje se modifikovani filtar koji vrši
eliminaciju šuma po slojevima. Filtrirani podaci su korisćeni za treniranje robusnog klasifikatora na bazi C4.5 stabla
odlučivanja, a rezultati upoređeni sa rezultatima dobijeni3m bez filtriranja. Performanse klasifikacije se povećavaju sa

eliminisanjem šuma iz trening podataka, pokazujući da je preporučeni saturacioni filtar sposoban da eliminiše šum.
Abstract - The effectiveness and efficiency of data mining techniques largely depends on the quality of the data used to build
the data mining models employed. This makes the quality of the data a significant issue in practice. The fact that noise in both

training and test data set can adversely affect the performance of machine learning algorithms justifies the increasing research
effort dedicated to the investigation of robust, accurate noise detection algorithms. The paper presents an application of a

saturation filter methodology to detect noisy examples in the domain of software fault detection. Based on the analysis of the
results, a modified saturation filter is proposed, which performs stratified noise elimination. Filtered data is used to train

robust C4.5 decision-tree classifiers and the prediction results are compared to those achieved by classifiers trained with noisy
data. The classifier performance is increased when noise is eliminated from the dataset, showing that the proposed saturation

filter is able to eliminate the noise and preserve the data relevant to the concept.

1. INTRODUCTION

Advances in technology over the past decades have resulted
in production of large amounts of data containing all sorts of
potentially useful information. Extracting the information of
interest from this large bulk is by no means a trivial task. In a
strive to use the information gathered, data mining techniques
have come to be employed in all areas of human activity.
They are used to solve a variety of problems in fields such as
business, finance, software quality [3], network intrusion
detection and Internet search engines design. The use of data
mining techniques has led to the automation of many
processes and procedures that once solely depended on
human expertise, leading to more cost-effective and time-
effective processes.
The effectiveness and efficiency of data mining techniques
largely depends on the quality of the data used to build the
data mining models employed. This makes the quality of the
data a significant issue in practice. Formally, the data is
considered clean if it incorporates only the data stemming
from the target concept, which the data mining techniques are
trying to learn. All other data obscure the target concept and
can be considered noise. In practice, and in this work, the
term noise is used in a broader sense [4] denoting all
examples that do not follow the same model as the rest of
data. This definition “includes not only erroneous data but
also surprising veridical data” [5]. Such data items are
referred to as outliers.
Recently, several studies have been carried out on outlier
detection in the data mining community. These studies
broadly classify outliers into four categories. The first
category is distribution-based outlier, which is defined based

on the probability distribution. A standard distribution is used
to fit the dataset. For example, a Gaussian mixture model is
used to present the normal behaviors of the dataset [6], and
each data item is given a score according to the changes in
the model. High score indicates a high probability that the
data item is an outlier. Distance-based outlier is the second
category, which was presented by Ramasway et al. [7].
Outliers are identified by this top k data points after all data
points in dataset are ranked by the distance to their kth
nearest neighbor. Ramasway et al. gave effective algorithms
for mining top k outliers. Jiang et al. [8] addressed cluster-
based outlier detection, which is the third category. They
considered the observations in small clusters as outliers.
However, He et al. [9] proposed another technique, which
found outliers based on clustering algorithm by incorporating
semantic knowledge such as the class label of each data point
in the dataset. From the class information viewpoint, the
observations whose class labels are different from that of the
majority of the cluster are considered semantic outliers. In a
recent study [11], an outlier was defined from software
engineering point of view by an expert in a clustering
approach. For a given cluster, if a majority of software
modules are classified as not fault-prone, the expert can make
an educated assessment that the few fault-prone modules in
the cluster are likely noisy data items and could be eliminated
from the software measurement data. The forth category is
rule-based outlier, [10]. An observation can be assigned to
one and only one rule. Each rule is classified as FP (fault-
prone) or NFP (not fault-prone), based on the probability of
the instances associated with that rule being FP or NFP. If an
instance is associated with a rule that has a different class
label (FP or NFP) then that instance is likely to be an outlier

 419

candidate. The work presented in this paper builds on the
work presented in [1], where each single data item that
contributes largely to the complexity of the learned
hypothesis is considered an outlier.
The presence of noisy data in the training data set has been
shown to hurt the predictive accuracy of data mining
classifiers [3].
Generally speaking, there are three ways that data mining
algorithms can handle noise. First, algorithms can be
designed to be robust in the presence of noise. In this case, no
specific noise detection steps are necessary; accuracy of the
classifier on test data will not be significantly affected by the
noise in the training data set. In the presence of significant
amounts of noise, however, performance of these techniques
may suffer regardless. In the second case, polishing
techniques are designed to detect and correct noise in the data
prior to training of the classifier [12]. Finally, noise can be
detected and removed from the data prior to training of the
classifier by using filtering techniques [3]. Noise handling m
the second and third cases is a separate and distinct process
from training the final classifier, with the major difference
being that the second process will correct the cause of the
noise, while the third will simply remove the noisy instance
from the data set. The second method is preferred when the
training data set has a small number of observations. In this
case, the elimination of any observations will significantly
reduce the size of the training data set with potentially
adverse effects on the final classifier. The technique
described in this paper fall in the third general class of noise
detection algorithms.
The rest of this paper is organized as follows: Section 2
presents the methodology. Experimental evaluation is
described in Section 3. Finally, conclusions are drawn in
Section 4.

2. SATURATION FILTER

The saturation approach to noise filtering has its theoretical
foundation in the saturation property of training data [14].
The algorithm, described in detail in [13], is outlined here for
the sake of completeness. The description is based on that of
the authors of the approach, presented in [2].
Suppose that a complexity measure c is defined and that for
any hypothesis H its complexity c(H) can be determined.
Based on this complexity measure, for a training set E one
can determine the complexity of the least complex hypothesis
correct for all the examples in E; this complexity, denoted by
g(E) is called the CLCH value (Complexity of the Least
Complex Hypothesis, correct for all the examples in E).
In [24] the authors show that if E is noiseless and saturated
(containing enough training examples to find a correct target
hypothesis), then g(E) < g(En), where En = E ∪ {en} and en is
a noisy example for which the target hypothesis is not
correct. The property g(E) < g(En) means that noisy examples
can be detected as those that enable CLCH value reduction.
The approach in an iterative form is applicable also when En
includes more than one noisy example.

It must be noted that the saturation property of a training set
is the main theoretical condition for the presented filter. In

practice many domains have a restricted number of training
examples and hence it can be assumed that these domains do
not satisfy the saturation condition. Notice, however, that the
described algorithm is applicable without changes also in this
case. The reason is that for some sub-concept of the domain
there may still be enough training examples so that this
subpart of the domain is saturated; hence, a sub-theory
description is induced by the learner whereas all other
examples are eliminated since the learner will treat them as
being erroneous or exceptions of the sub-theory description
being learned.
The greatest practical problem of the saturation filter is the
computation of the CLCH value g(E) for a training set E. In
rule-based induction, the hypothesis complexity measure
c(H) can be defined as the number of attribute value tests
(literals) used in the hypothesis H. In this case, the
corresponding g(E) value can be defined as the minimal
number of literals that are necessary to build a hypothesis that
is correct for all the examples in E.
Suppose that the training set is contradiction free (there are
no examples that differ only in their class value), and that the
set of literals L defined in the hypothesis language is
sufficient for finding a hypothesis H which is correct for all
examples in E. Then the necessary and sufficient condition
for a subset L' ⊆ L to have this same property is that for every
possible example pair, such that the first example in the pair
is a positive example from E and the second one is negative,
there must be at least one literal in L' which covers the pair.
A literal covers a pair if it is true for the positive and false for
the negative example in the pair. This fact enables that the
g(E) value defined by the minimal number of literals can be
computed by any minimal covering algorithm over the set of
example pairs. The ILLM heuristic minimal covering
algorithm, presented here as Procedure 1 in Figure 1, is used.
The advantages of this approach are: g(E) computation does
not require the actual construction of a hypothesis and the
g(E) value can be determined relatively fast. This approach
presents the heart of the saturation noise filtering method
used in this work.
The procedure starts with the empty set of selected literals L'
(step 1) and the set U' of yet uncovered example pairs equal
to all possible pairs of one positive and one negative example
from the training set (step 3), for which in (step 2) weights
v(ei,ej) have been computed. The weight of a pair is high if
the pair is covered by a small number of distinct literals from
L. The meaning of this measure is that for a pair with a large
weight it will be more difficult to find an appropriate literal
which will cover this pair than for a pair with a small weight.
Each iteration of the main algorithm loop (steps 4 -11) adds
one literal to the minimal set L' (step 9). At the same time, all
example pairs covered by the selected literal are eliminated
from U' (step 10). The algorithm terminates when U' remains
empty. In each iteration, the algorithm tries to select the
literal, which covers a maximal number of 'heavy' example

 420

pairs (pairs with large weight). This is done so that a pair
(ea,eb) is detected which is covered by the least number of
literals (step 5).

Figure 1 Heuristic minimal covering algorithm

At least one of the literals from the set Lab with literals that
cover this pair (step 6), must be included into the minimal set
L'. To determine which literal, weight w(l) is computed for
each of them (step 7) and the literal with the maximal weight
is selected (step 8). The weight of a literal is the sum of the
weights of example pairs that are covered by the literal.
Algorithm 1 in Figure 2 presents the saturation filter. It
begins with the reduced training set E' equal the input
training set E (step 1) and an empty set of detected noisy
examples A (step 2). The algorithm supposes that the set of
all appropriate literals L for the domain is defined. U
represents a set of all possible example pairs where the first
example in the pair is from the set of all positive training
examples P' in the reduced set E', and the second example is
from the set N' of all negative examples in the reduced train-
ing set E'. The algorithm detects one noisy example per
iteration. The base for noise detection are weights w(e) which
are computed for each example e from E'. Initially all w(e)
values are initialized to 0 (step 6). At the end, the example
with maximum weight w(e) is selected (step 17). If the
maximum w(e) value is greater than the parameter εh
predefined value then the corresponding training example is
included into the set A (step 19) and eliminated from the
reduced training set E' (step 20). The new iteration of noise
detection begins with this reduced training set (steps 3-22).
The algorithm terminates when in the last iteration no ex-
ample has w(e) greater than εh. Noisy examples in A and the
noiseless E' are the output of the algorithm.
Computations in each iteration begin with the search for the
minimal set of literals L' that cover all example pairs in U
(calling Procedure 1 in step 5). A pair of examples is covered
by a literal I if the literal is evaluated true for the positive
example and evaluated false for the negative example in the
pair. This step represents the computation of the g(E') value.
Next, a heuristic approach is used to compute weights w(e)
that measures the possibility that the elimination of an
example e would enable g (E') reduction.

Figure 2 Saturation filter algorithm

Weights w(e) are computed so that for every literal I from L',
minimal sets of positive (P*) and negative examples (N*) are
determined, such that if P* or N* are eliminated from E' then
I becomes unnecessary in L'. This is done in a loop (steps 9-
12) in which every example pair is tested to determine if it is
covered by a single literal I. If such a pair is detected (step
10) then its positive example is included into the set P* and
its negative example into the set N* (step 11). Literal
elimination from L' presents the reduction of the g(E') value.
If a literal can be made unnecessary by elimination of a very
small subset of training examples, then this indicates that
these examples might be noisy. In steps 14 and 15, the w(e)
weights are incremented only for the examples which are the
members of the P* and N* sets. The weights are incremented
by the inverse of the total number of examples in these sets.
Weights are summed over all literals in L'. Step 13 is
necessary because of the imperfectness of the heuristic
minimal cover algorithm. Namely, if some I ⊆ L' exists for
which there is no example pair that is covered only by this
literal (i.e., for which either P* = ∅ or N* = ∅), this means
that L' is actually not the minimal set because L' \ {1} also
covers all example pairs in U. In such case L' is substituted
by L' \ {I}.
The presented saturation filter uses the parameter εh, that
determines noise sensitivity of the algorithm. The parameter
can be adjusted by the user in order to tune the algorithm to

Procedure 1: MINIMAL COVER
Input: U (set of example pairs), L (set of literals)
Output: L' (minimal set of literals)
(1) L' ← ∅
(2) for every (ei,ej) ∈ U compute weights
 v(ei,ej) = 1/z, where z is number of literals l ∈ L that cover (ei,ej)
(3) U' ← U
(4) while U' ≠ 0 do
(5) select (ea,eb)
 (ea,eb) ∈ U': (ea,eb) = arg max v(ei,ej),
 where max is over all (ei,ej) ∈ U'
(6) Lab ← {l | l ∈ L covering (ea,eb)}
(7) for every l ∈ Lab compute
 w(l) = Σ v(ei,ej), where sum is over all (ei,ej) ∈ U' covered by l
(8) select literal ls: ls = arg max w(l), where max is over all l ∈ Lab
(9) L'←L' ∪ {ls}
(10) U' ← U' \ {all (ei,ej) covered by ls}
(11) end while

Algorithm 1: SaturationFilter(E)
Input: E (training set), L (set of literals)
Parameter: εh (noise sensitivity parameter)
Output: A (detected noisy subset of E)

(1) E' ← E
(2) A ← ∅
(3) while E' ≠ ∅ do
(4) find U, set of all possible example pairs for examples in E'
(5) call Proc.1 to find min. L', L' ⊆ L so that ∀ (ei,ej) ∈ U ∃ l ∈ L'

with the property l covers (ei,ej)
(6) initialize w(e) ← 0 for all e ∈ E'
(7) for every l ∈ L' do
(8) P* ← ∅, N* ← ∅
(9) for every (ei,ej) ∈ U
(10) if (ei,ej) covered by l and no other literal from L' then
(11) P* ← P* ∪ {ei}, N* ← N ∪ {ej}
(12) end for
(13) if P* = ∅ then L' ← L' \ {l} and goto step 6
(14) if |P*| < |N*|
 for every e ∈ P* do

*
1)()(

P
ewew +←

(15) else
 for every e ∈ N* do

*
1)()(

N
ewew +←

(16) end for
(17) select example es: es = arg max w(e),
 where max; is computed over all e ∈ E'
(18) if w(es) > εh then
(19) A ← A ∪{es}
(20) E '← E' \ {es}
(21) else exit with generated sets A and E'
(22) end while

 421

the domain characteristics. Reasonable values are between
0.25 and 2. For instance, the value 1.0 guarantees the
elimination of every such example by whose elimination the
set L' will be reduced for at least one literal. Lower εh values
mean greater sensitivity of the algorithm (i.e., elimination of
more examples): lower εh values should be used when the
domain noise is not completely random, and when dealing
with large training sets (since statistical properties of noise
distribution in large training sets can have similar effects). In
ILLM the default values of εh are between 0.5 and 1.5,
depending on the number of training examples in the smaller
of the two subsets of E: the set of positive examples P or the
set of negative examples N. Default values for the saturation
filter's noise sensitivity parameter εh are: 1.5 for training sets
with 2-50 examples, 1.0 for 51-100 examples, 0.75 for 101-
200 examples, and 0.5 for more than 200 examples.
The approach of selecting whether to eliminate the positive or
the negative example in the pair based on the number of
literals which cover them, proved to lead to biased behavior
of the filter in the case study presented in the next section.
The examples pertaining to the minority class will more
likely form a smaller set of examples that can be eliminated
to make the selected literal unnecessary. Thus, it is more
likely that the condition in line 14 will cause the members of
the minority class to be selected for removal from the dataset.
As the case study shows, when the dataset is unbalanced the
filter tends to concentrate only on removing the members of
the minority class. Since this is not consistent with the
preposition that the dataset incorporates random noise, the
criterion for selecting whether the positive or negative set of
examples should be eliminated has been revised to
accommodate unbalanced datasets. Instead of merely
comparing the sizes of the of P* and N* datasets, their values
were normalized using the prior probabilities of an example
being positive or negative and a scaling constant which was
used as an additional parameter of the filter. The criterion in
line 14 of Figure 2 has been changed to:

np

NCP
ππ

|*||*|
<⋅

where:
πp – prior probability of the sample being positive,
 πn – prior probability of the sample being negative,

C – scaling constant.

3. EXPERIMENTAL EVALUATION

The software metrics and quality data used on our study is
that of a NASA software project, JM1, written in C++.
The software metrics and quality data used in our study is
that of a NASA software project, JM1, written m C++. The
data was made available through the Metrics Data Program
(MDP) at NASA, and included software measurement data
and associated error (fault) data collected at the function /
subroutine / method level. The dataset used consisted of 188
modules, of which 55 modules contained errors (ranging
from 1 to 13) while the remaining 414 modules were error-
free, i.e., had no software faults. A module with no faults was
considered NFP, and FP otherwise. Each module in the JM1
project was characterized by 21 software measurements: four
McCabe metrics (Cyclomatic_Complexity,
Essential_Complexity, Design_Comlexity, and Loc_Total);
eight derived Halstead metrics (Halstead_Length,

Halstead_Volume, Halstead_Level, Halstead_Difficulty,
Halstead_content, Halstead_Effort, Halstead_Error_Est, and
Halstead_Prog_Time); four metrics of Line Count
(Loc_Executable, Loc_Comment, Loc_Blank, and
Loc_Code_And_Comment); four basic Halstead metrics
(Unmque_0perators, Unique_0perands, Total_0perators, and
Total_0perands); and one metric for Branch Count. The
quality of the modules was described by their Error Rate, i.e.,
number of defects in the modules, and Defect, whether or not
the module has any defects. The latter was used as the class
label. We only used the 13 primitive metrics and module
class was used in the analysis, all of which were of
quantitative type. The eight derived Halstead metrics were
not used.
The filtering has been applied a number of times, with
different values of the filter sensitivity parameter. The
datasets obtained in this way have been used to train the C4.5
classifier. The classifier obtained for each dataset has then
been evaluated both by 10 fold cross-validation and
witholding half of the dataset as test dataset, which has not
been used to train the classifier.
The results obtained through cross-validation are presented in
Table 2:

Th Overall
Error

Type I
Error
(%)

Type II
Error
(%)

L
ea
ve
s

N
od
es

NFP
elim.
(%)

FP elim.
(%)

0.5 9.7222 2.2556 100 4 7 0 94.5454
0.6 9.7222 2.2556 100 4 7 0 80
0.7 9.7222 2.2556 100 4 7 0 80
0.8 9.7222 2.2556 100 4 7 0 80
0.9 13.0719 5.2631 65 5 9 0 80

1 14.3678 11.2781 24.3902 2 3 0 63.6363
1.1 14.3678 11.2781 24.3902 2 3 0 25.4545
1.2 18.0791 17.2932 20.4545 9 17 0 25.4545
1.3 16.1111 12.7819 25.5319 10 19 0 23.6363
1.4 16.2162 13.5338 23.0769 2 3 0 14.5454
1.5 13.369 12.0300 16.6666 11 21 0 5.45454
1.6 13.369 12.0300 16.6666 11 21 0 1.81818
1.7 13.369 12.0300 16.6666 11 21 0 1.81818
1.8 13.369 12.0300 16.6666 11 21 0 1.81818
1.9 13.369 12.0300 16.6666 11 21 0 1.81818

2 15.4255 14.2857 18.1818 8 15 0 0
Table 2 Cross-validation results obtained for the dataset

containing 188 instances.
The results show the overall misclassification error of the
classifier as well as the rate of misclassification of NFP
modules as FP (Type I error) and misclassification of FP
modules as NFP (Type II error). The latter being more
serious misclassification. The table also shows the
complexity of the generated C4.5 tree, listing the number of
nodes in it as well as the number of leaves of the tree. The
table also shows the portion of FP and NFP modules
eliminated.
The results obtained in this way showed that C4.5 models
built based on the filtered dataset behaved better only when
the filter removed a single instance from the dataset. It is
unlikely that the dataset in question contains such a small
amount of outliers. However the C4.5 algorithm did actually
generate a much smaller decision tree for the case when 20%
of FP modules have been eliminated from the dataset. Such a
model is much less likely to be over-fitted than the one
generated using the initial dataset.
The experiments also showed a distinct inclination of the
saturation filter to the removal of the FP instances, as
member of a minority (FP) class. This is inconsistent with the
hypothesis that the dataset contains random noise. Such bias
of the filter cannot be attributed to the failure of the dataset to

 422

incorporate the data allowing for the forming of complete and
consistent hypothesis, rather it is likely that it is a result of the
bias of the heuristic algorithm used to determine which data
items should be eliminated.
Separate test dataset based validation results are shown in
Table 3.

Thresh
old

Overall
Error
(%)

Type I
Error (%)

Type II
Error (%)

0.5 20.2128 10.60606 42.85714
0.6 20.2128 10.60606 42.85714
0.7 20.2128 10.60606 42.85714
0.8 20.2128 10.60606 42.85714
0.9 19.1489 7.575758 46.42857

1 17.0213 21.21212 7.142857
1.1 17.0213 21.21212 7.142857
1.2 14.8936 3.030303 42.85714
1.3 18.0851 9.090909 39.28571
1.4 18.0851 24.24242 3.571429
1.5 17.0213 7.575758 39.28571
1.6 17.0213 7.575758 39.28571
1.7 17.0213 7.575758 39.28571
1.8 17.0213 7.575758 39.28571
1.9 17.0213 7.575758 39.28571

2 14.8936 7.575758 32.14286
Table 3 Test dataset based results obtained for the dataset

with 188 instances
The approach of modifying the selection criterion by adding a
scaling constant, which would be an additional parameter of
the algorithm allowed for the possibility of making the filter
more balanced, however it was then necessary to vary two
parameters to achieve the desired results (the ratio of positive
and negative examples eliminated should be in the vicinity of
ratio of the prior probabilities of an example being positive or
negative, respectively). For the threshold of Th = 0.3975 and
the scaling constant C = 54.9 a a balanced filter was achieved
by removing 13 positive and 31 negative examples. The
overall, Type I and Type II error obtained through cross-
validation were 20.14, 22.55 and 14.29, respectively. The
results for the test dataset were 21.28, 28.79 and 3.6.
The model constructed for this dataset achieved significantly
lower Type II error rate than the model built based on the
initial dataset. Also the model is significantly simpler having
only tree nodes instead of fifteen, which is a very desirable
characteristic. The test dataset validation results show that
the model generated by the C4.5 algorithm, although much
simpler, achieved far better Type II error rate, which is a
significant result bearing in mind that the C4.5 algorithm is a
robust algorithm designed to handle noise well.
4. CONCLUSION

In the work presented, the saturation filter approach to noise
elimination has been applied to a domain it has not been used
in before. Specifically, it has been applied to the software
quality improvement domain. An inherent bias of the original
approach has been observed and an approach devised to
alleviate the problem. The modified saturation filter was able
to exhibit balanced behavior and improve the performance of
a robust algorithm such as C4.5.
An improvement of the saturation filter approach has been
proposed. The parameters of the new filter have been
determined manually to achieve the desired behavior.
Presently, there is no mechanism of adjusting the parameters
of the filter automatically. This is the direction in which
further research is possible.
It has been demonstrated that the modified saturation filter is
capable of achieving results in the case study at hand,
something that the original saturation filter was not capable.

REFERENCES

[1] D. Gamberger; N. Lavrac; S. Dzeroski: Noise
elimination in inductive concept learning: A case
study in medical diagnosis. In Proc. of the 7'
International Workshop on Algorithmic Learning
Theory. Springer, Berlin, 1996, pp. 199 - 212.

[2] D. Gamberger; N. Lavrac; C. Groselj: Experiments
with noise filtering in a medical domain. In Proc. of
the 16th International Conference on Machine
Learning, Morgan Kaufmann, 1999, pp. 143 - 153

[3] T.M. Khoshgoftaar; L.A.Bullard; K. Gao: Detecting
Outliers Using Rule-Based Modeling for Improving
CBR-Based Software Quality Classification Models.
Cased-Based Reasoning Research and
Development, LNAI 1689, Springer-Verlag, 2003,
pp. 216-230.

[4] Weisberg, S. (1985). Applied Linear Regression.
John Wiley &: Sons.

[5] John, G.H. (1995). Robust decision trees: Remov-
ing outliers from data. In Proc. of the 1st Int.
Conference on Knowledge Discovery and Data
Mining, 174-179. AAI Press.

[6] K. Yamanish, J. Takeuchi, G. Williams, On-line
unsupervised outlier detection using finite mixtures
with discounting learning algorithm. In Proceedings
of KDD'00, Boston, MA, USA, 2000. pp.320-325.

[7] S. Ramasway, R. Rastogi, S. Kyuseok, Efficient
algorithms for mining outliers form large data sets.
In Proceedings ofSIGMOD'00, Dallas, Texas, 2002,
pp. 93-104.

[8] M. Jiang, S. Tseng, C. M. Su. Two-phase clustering
process for outliers detection. Pattern Recognition
Letters, 22(6/7), 2001, pp.691-700.

[9] Z. He, S. Deng, X. Xu. Outlier detection integrating
semantic knowledge. In Proc. of the 3th Int'1 Conf.
On Web-Age Information management, Beijing,
China, 2002, pp.126-131.

[10] T. M. Khoshgoftaar, L. A. Bullard, K. Gao.
Detecting outliers using rule-based modeling for
improving CBR-based software quality
classification models. Cased-Based Reasoning
Research and Development, Springer-Verlag, 2003,
pp.216-230.

[11] S. Zhong, T. M. Khoshgoftaar, N. Seliya. Analyzing
software measurement data with clustering
techniques. IEEE Intelligent Systems, vol. 19 Issue
2, March 2004. pp.20 – 27

[12] C.M. Teng. Correcting Noisy Data. Proceedings 16th
International Conference on Machine Learning.
Morgan Kaufmann, 1999, pp. 239 - 248.

[13] Gamberger, D., Lavrac, N. & Dzeroski, S. (1996).
Noise elimination in inductive concept learning: A
case study in medical diagnosis. In Proc. of the 7th
International Workshop on Algorithmic Learning
Theory, 199-212. Springer, Berlin.

[14] Gamberger, D. & Lavrac, N. (1997). Conditions for
Occam's razor applicability and noise elimination. In
Proc. of the 9th European Conference on Machine
Learning, 108-123. Springer, Berlin.

