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Sadržaj – Jedan od najčešće korišćenih numeričkih alata za simulaciju fotoničkih struktura 

zasnovanih na dielektričnim talasovodima je tzv. “beam propagation method (BPM)”. U 

ovom radu posmatrana je varijanta BPM zasnovana na metodi konačnih razlika i na 

transformaciji koordinatnih sistema, tzv. “structure related finite difference beam propagation 

method (SR-FD-BPM)”. U suštini, ova nova simulaciona tehnika u optoelektronici je   

jednostavna, fleksibilna i idealna za primenu u CAD okruženju, posebno u analizi prostorno 

zakrivljenih talasovodnih struktura. Simulacione metode zasnovane na transformaciji 

koordinatnih sistema, kao npr. “structure-related FD-BPM”, omogućavaju uspešno CAD 

projektovanje geometrijski složenih fotoničkih komponenti, koje se danas intenzivno koriste u 

proizvodnji fotoničkih čipova. Dati su i ilustrativni rezultati SR-FD-BPM simulacija. 
 

Abstract – One of the most widely used numerical simulation tools for modeling waveguide-

based photonic structures is the beam propagation method (BPM). In this paper the attention 

is paid on the structure related finite difference beam propagation method (SR-FD-BPM). 

This recently developed simulation technique for optoelectronic design is conceptually 

straightforward,  flexible and ideally suited for CAD software, especially when the waveguide 

structure under analysis is changing in the direction of the propagation, containing oblique or 

curved interfaces. Coordinate transformation approaches, such as structure-related FD-BPM, 

allow the comfortable analyze of wide variety of geometrically complex light-wired photonic 

structures witch are used frequently in photonics circuitry CAD design. Some illustrative 

simulation results, based on an efficient SR-BPM algorithm, are presented in the paper. 
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1. INTRODUCTION 
 

The recent years enormous increase in bandwidth 
requirements for telecom and datacom transmission systems, 
including in large part the growth of the Internet, have put 
photonics and integrated optics in a focus of the current 
electronics industry. The light-wave transmission systems, 
photonic integrated circuits (PIC) and fiber-optic photonic 
components are the foundation of such systems. Continual 
and stringent demands on the photonics community are to 
develop the new or improved technologies enabling 
production of these components [fibers, lasers, detectors, 
modulators, couplers, switches, wavelength-demultiplexing 
devices (WDM’s), etc.].  

 
Behind the industrial and commercial scene, however 

with crucial importance have been the research and the 
developments in modeling techniques and introduction of 
computer-aided design (CAD) software for modeling opto-
electronic components and systems. Design methodologies 
and tools play extremely significant roles in the advancement 
of optical components. Commercial and in-house tools would 

not be possible without the development in modeling 
techniques for optoelectronic and photonics. Ever-increasing 
demands to enable telecom and datacom system to meet very 
stringent requirements significantly rely on research and 
advances in modeling techniques.  

 
Basically, optical modes can propagate in a given, 

uniform cross-section of a wave guiding structure. Most 
photonic devices, however, change their shape in the 
direction of propagation. In such cases, technique that can 
handle this serious design issue is the beam propagation 
method (BPM). The BPM is, certainly, the most widely used 
propagation technique for modeling photonic devices, and 
most commercial software for such modeling is based on it. 
BPM is essentially a particular approach for numerical 
solving of appropriate approximation of the exact wave 
equation for monochromatic waves. Amongst several  BPM 
algorithms developed in recent two decades (FE-BPM, MoL-
BPM, FDTD-BPM, etc.), one of the most commonly used 
simulation algorithm in integrated optics is the frequency-
domain based finite difference beam propagation method 
(FD-BPM), [1-3].  
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The standard implementation of FD-BPM in a rectangular 
coordinate system causes serious problems and certain 
restrictions if the structure under analysis contains oblique or 
curved interfaces or when the structure is changing in the 
direction of the propagation. The source of these restrictions 
is the inevitable staircase approximation of the boundaries 
which occurs during the finite difference discretization 
procedure. This deficiency has been successfully remedied 
for special cases by the coordinate transformation 
approaches, [4-8].  To avoid using the fine meshes and small 
propagation steps, FD-BPM has been reformulated in non-
orthogonal, structure related (SR), coordinate systems, [9-
12].  Another promising approach has been recently proposed 
in [13-14], featuring the separation of the BPM propagation 
algorithm from the discretization FD grid. 

 
The goal of this paper is to review some advances in the 

recently developed structure related beam propagation 
methodology. The author has been a member of the 
Nottingham’s Electromagnetics Research Group, today the 
George Green’s Institute, for several years, contributing to 
those major advances in photonics, [2,3,6,7,10,11,12]. 

 
 

2.  STRUCTURE RELATED FD-BPM 

 
Many attempts have been made during the last two 

decades to overcome the presence of the staircasing in the 
finite difference related numerical methods. These have been 
resulted in the developing of the so-called improved FD-
BPM schemes in rectangular coordinate environment for step 
index devices, [15]. The improved FD approach takes into 
account the boundary conditions for the field and its 
derivatives near the dielectric interfaces, which results to 
second order accurate formulas for the second derivatives of 
the field. However, in the case of the curved waveguide 
structures in the propagation direction using the standard 
rectangular coordinate system, it is obvious that certain 
coefficients in improved discretization formulas have to be 
calculated before every forward -step. Consequently, such 
algorithm accumulates numerical noise during the 
propagation with the increasing of the run-time, especially for 
fine meshes and smaller propagation steps. 

 
The Nottingham’s research team have pioneered the use 

of structure related coordinate schemes for FD-BPM, where 
the discetrisation procedure exactly matches the local 
geometry of the structure, thus eliminating non-physical 
scattering due to the staircasing effect. The SR coordinate 
system approach allows only one initial computation of the 
improved FD formulas coefficients of the same order of the 
accuracy during the propagation. The resulting SR FD-BPM 
(SR-BPM) algorithm allows simulations with noticeably 
reduced numerical noise and shortened simulation time. The 
advantage of this approach is that, in comparison to the 
standard rectangular schemes, coarser mesh sizes can be used 
for the same accuracy offering a significant reduction in 
computational time involved, particularly in 3D simulations.  

 
SR-BPM approach and resulting algorithm is used 

nowadays to design tapered, oblique and bi-oblique shaped 
optoelectronic waveguides and waveguide-based devices, 
such as -variant directional waveguide couplers, -branches, 

optical interconnects, waveguide polarizers and similar 
photonics integrated circuits (PIC) components that include 
waveguide bends. Some illustrative examples and results are 
given in present paper, involving a paraxial, semi-vectorial 
3D SR-BPM analysis of “S”-curved directional waveguide 
couplers, together with comparison with results from a 
similar standard analysis using a rectangular coordinate 
system.  Comparison of the results for the same order of 
discretization readily shows the distinct advantages of SR 
schemes and SR-BPM algorithm: the propagation error is 
reduced; the simulation time is shortened, particularly in 3D 
simulations which are the practical reality in optoelectronics. 

  
 

3.  THEORETICAL BASICS OF SR-BPM 
 
In this section, the basic approach of SR-BPM is 

illustrated by formulating scalar and semi-vectorial 
(polarized) SR-BPM wave-equation. Under the assumption 
that the refractive index  at operating wavelength  
varies slowly along the propagation direction , one can 
derive the so-called semi-vectorial  Helmholtz wave equation 
based on the transverse electric field , or 
transverse magnetic field , 

 
                                      (1) 
 

where k is the local wave number, ,  is the 
free space wave number,  can be either  or . If, in the 
general 3D non-orthogonal coordinate system  we 
choose the coordinates  as ,  and 

, we obtain the SR wave equation, [9,11], 
 

    (2) 

 
where  can be either  or 

. The first and second derivatives in (2) 
with respect to non-orthogonal transverse plane coordinate  
and second derivatives with respect to standard coordinate  
are considered to be discontinuous at the boundaries, and 

, , ,  are 
functions of the partial derivatives of  , [9], 

 

 

 

  

 
The propagation is assumed to be in the +  (i.e. the +  

with standard rectangular coordinate) direction and the field 
is separated as a slowly-varying envelope function  and a 
fast-oscillating exponential phase term, 

 
                        (3) 

 
with  an imposed background propagation constant which 
has to be determined. By substituting of (3) in (2) and 
ignoring the  term, the paraxial one-way wave 



 

 160

equation in the 3D non-orthogonal coordinate system 
 can be derived as, 

  

                                                     (4) 

 
where the operators  and  are shown to be, [9],  
 

                                      (5) 

 

  (6) 

 
Equations (2-4) are derived under the scalar 

approximation of the field, but they can be straightforwardly 
upgraded to a semi-vectorial BPM algorithm. Semi-vectorial 
SR approach can be applied for desired function  
assuming that propagation occurs in the  direction. 

 
A standard Crank-Nicolson method is easily introduced in 

the 3D SR-BPM algorithm. For the well confined waveguide 
fields transparent boundary conditions (TBC), [16], are 
typically used at the edges of the computational window, 
otherwise the Berenger’s perfectly matched layers (PML) 
have to be introduced in the algorithm. 

  
 

3.  SIMULATION RESULTS 

 
FD-BPM methods have been extensively used in analysis 

of bent and curved waveguide based photonics devices. The 
SR approach allow designer the flexibility and comfortable 
analysis of not only the circular-like bends and curvatures, 
designer has freedom of choice to use any curvature function 
providing optimal integrated optic requirements, such as to 
achieve compact low loss of optoelectronic circuits.  

 

 
Fig. 1. Geometry of 3D directional waveguide coupler in 

SR coordinate system,  plane. 
 
Some illustrative examples of 3D curved directional 

couplers design are presented to highlight the effectiveness 
and flexibility of the SR FD-BPM. The propagation of the 
fundamental TE and TM modes, with both - and -field 

formulations, are studied and results compared with those 
obtained from simulations based on a rectangular coordinate 
system. The method can be straightforwardly applied to 
single curved waveguide cases or even more complex 
structures with curved sections.  

 
Waveguide directional couplers exchange the power 

between guided modes of adjacent waveguides and perform a 
number of useful functions in optoelectronic circuits, such as 
power division, switching and modulation. The “S” curved 
couplers analysed have advantage over couplers produced 
from straight segments because of their lower loss properties. 
Figure 1 shows a symmetrical coupler made from two 
identical and adjacent but spatially separated curved input 
and output waveguides and it is used for total power transfer 
from the input to the output guide. The asymmetrical coupler 
configuration is shown respectively in Figure 2. In general, 
one or more curved coupled waveguides with different 
curvatures and different cross-sections can be considered.  

 
 

 
 
Figure 2. The asymmetrical waveguide coupler diagrams. 

The coupler is modeled with straight and curved guide (on 
the left), or with guides of different curvatures (on the right). 

 
The curve function of a  “S” curved coupler can be given 

parametrically. Amongst a various possibilities, because of 
the simplicity, in the proceeding simulation example a cosine 
type structure related geometry was considered (for ; 
symmetrically for ),  

 

          (7) 

  

for  , and 
 

         (8) 

 
for , where   , coupler 
configuration and geometry shown in Figure 3. Functions , 

,  and  can be easily obtained analytically, or can be 
even computed numerically. If the curvature function 
changes slowly with , only the function  varies as the 
square of the gradient of  with respect to the oblique 
coordinate , and if the condition  is 
fulfilled, we can introduce , which is 
always the case except for the sharp guide bends. The 
discretization mesh, in the  plane, Figure 3, in the  
direction is performed in the standard rectangular manner.  
The meshing in the  direction follows the curved geometry 
of waveguides. Around the waveguides the =const. lines are 
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‘parallel’ to the dielectric boundaries enabling the efficient 
equally distributed discretization. In the region between the 
guides, , the mesh density can be performed 
with noticeably high degree of freedom, with no significant 
influence on the accuracy of the simulation results. 
 

 

 
 
Figure 3. Configuration and geometry of 3D symmetrical 

rib waveguide coupler in SR coordinate system,  plane. 
 

In 3D simulations performed, the waveguide (I) is 
considered as input and waveguide (II) as output guide, 
which can be interchanged because of the symmetry. At 

 the TE or TM mode field is launched from the accurate 
mode solver in the waveguide (I). The geometry of the 
coupler guides is kept constant. The total coupling length  
has to be determined with numerical simulations, under the 
condition of total power transfer of guided fundamental TE or 
TM mode from the input (I) to the output (II) mode. The total 
coupling length  is calculated with both rectangular and SR 
based FD-BPM algorithms, with standard rectangular one 
using a very fine mesh and small steps. Both algorithms tend 
to give the same answer for .  The numerical accuracy of 
the standard and SR-BPM simulation is evaluated in terms of 
mode mismatch loss , defined in the 3D case as 

 

  (9) 

 
where  is the incident fundamental mode at  within 
guide (I) and   is the coupled propagation field in guide 
(II) at  obtained using the BPM simulation. 

A 3D symmetrical rib waveguide coupler of type (7-8), 
see the inset in Figure 4, and with the  plane defined as 
in Figure 3, has been numerically analyzed, and gathered data 
readily indicate the efficiency and accuracy of the SR 
approach. Rib waveguides have the identical cross-sections 
with , , , m, m, 

m, m,. The total coupling of the 
fundamental TE mode  is obtained with 

m, m and the total coupling length 
m. For TM-mode m is 

obtained. The  error in TM-mode propagation as function 
of the transverse mesh sampling is shown in Figure 4. It is 
obvious again that the SR scheme enables more accurate 3D 
simulations of the total coupling. In the SR scheme the 

number of  coordinate lines in the coupling region can be 
relaxed, the index mapping and FD improved formulas 
coefficients are calculated only once at , consequently 
giving considerably shorter simulation time for the same 
order of accuracy in comparison to the rectangular scheme. 
Both TE- and TM-mode propagation algorithms exhibit 
almost identical behaviour in terms of accuracy, only the total 
coupling lengths are different, which is due to the different 
background propagation constants. 

 
 

 
 

Figure 4. Mode mismatch loss at  versus mesh 
size, TM propagation, for the 3D coupler in inset of figure. 

 
 

 

Figure 5. The evolution of the total power transfer of the 
TE mode -field during the propagation in 3D coupler. 
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The Figure 5 shows the total power coupling of the 
fundamental TE mode -field within the symmetrical 
coupler. The transverse mesh size was kept to be 

m with 600 steps in the  propagation 
direction. The outer -field contour in Figure 5 is just 1% of 
maximal coupler field, the close one is 5% of the maximal 
field, and others show 10% field increments. The -fields in 
every -slice are normalised to the maximum field. It is 
obvious from Figure 5, that the almost complete power 
transfer occurs in the coupler region where rib waveguides 
are closest to each other. 

 
Due to unconditionally stable Crank-Nicolson procedure 

which was used in the algorithm, longitudinal step size  
do not affect significantly the accuracy of the simulation. In 
3D example described above, while the transverse mesh size 
is of the order 0.1 m and less, very accurate simulations 
have been obtained with   of the order 10 m. Also, 
various parametric curves were used in discretizing the 
region between two coupled guides, with uniform and non-
uniform spacing. Analysis of the results show that the 
accuracy of simulations is affected significantly, measured in 
terms of mode mismatch loss , only when the grid 
redistribution is performed near boundaries. This leads to the 
conclusion that the accuracy of the BPM simulations depends 
strongly and mostly of the method used for the discretization 
of the boundaries region of the waveguide.  

 
The vectorial SR BPM version of the algorithm is time-

consuming, however, results obtained for the coupling length 
 do not differ significantly from those obtained for the 

same meshes and under the same parameters as in 
simulations under the semi-vectorial approximation. This 
leads to the conclusion that in the analysis of the coupling in 
the curved but with rectangular cross-section waveguide 
couplers within a millimetre coupling length range a full-
vectorial approach is not mandatory.  
 

 

5.  CONCLUSION 
 
In this paper, some advances in the structure related beam 

propagation method have been addressed and reviewed. The 
main feature of the SR based method is an exact modelling of 
the local structure geometry. The numerical simulations, 
based on an efficient structure related FD-BPM algorithm, 
have been carried out to analyse propagation in 3D curved 
directional couplers. Results, compared with those obtained 
from simulations based on a rectangular coordinate system, 
demonstrate the advantages and generality of structure related  
over standard rectangular approach. The SR-BPM method 
offers flexibility in design of geometrically complex 
structures with curved sections, and significant computational 
resource savings.  
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