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Abstract – The application of the correlation technique in the system frequency response analysis is 
presented in this paper. The frequency response analyzer is implemented in MATLAB®Simulink 
environment and has been tested under different working conditions. Two examples are selected to 
stress the good features of the analyzer. An electromechanical system has served to show that the 
remarkable frequency analysis results can be obtained even under conditions of significant additive 
effects of signal noise on the system output. In another example, by using the developed analyzer the 
frequency characteristics of a system with non-rational transfer function are investigated.         
 
Sadržaj – U ovom radu je prezentovana primena korelacione tehnike pri analizi frekvencijskog 
odziva sistema. Frekvencijski analizator je implementiran u MATLAB®Simulink okruženju i testiran 
pod različitim uslovima rada. Odabrana su dva primera kako bi se istakle dobre osobine analizatora. 
Tako je na primeru jednog elektromehaničkog objekta pokazano da se zavidni rezultati frekvencijske 
analize dobijaju i u uslovima dejstva značajnog aditivnog signala šuma na izlazu sistema. U drugom 
primeru, pomoću razvijenog analizatora istražene su frekvencijske karakteristike sistema čije se 
ponašanje može okarakterisati  neracionalnom funkcijom prenosa. 
 

 
1.  INTRODUCTION 
 
 A very practical and important approach to the analysis 
and design of a control system is the frequency response 
method. One of the advantages of this approach is the ability 
to focus the efforts on the interesting frequency ranges. 
Although the experimental determination of the system 
frequency responses can be easily accomplished, the main 
disadvantage is that many industrial processes do not admit 
sinusoidal inputs in normal operation. The frequency 
response analysis offers some useful insights into stability 
and other characteristics of the control system. Frequency 
response allows us to understand the system behavior in the 
presence of more complex inputs. Also, frequency response 
analysis is a very well established system identification 
approach [1]. Namely, the measurement of the frequency 
response functions is an intermediate step in the identification 
process of the nonparametric models of the considered 
systems.      
 
 Notice that the standard Simulink block library does not 
provide any Frequency Response Analyzer (FRA) block. 
Hence, in the literature [2], [3] well-known correlation 
method was implemented in MATLAB®Simulink environment 
and some results are given in [4], [5], demonstrating the 
merits of the applied approach.  
 
 The paper is organized as follows. First, a brief review of 
the frequency response analysis by using the correlation 
method is given in Section 2. Then, in Section 3 some good 
characteristics of the developed analyzer are visualized by 

two interesting examples. Finally, in Section 4 some 
concluding remarks are given.      
 
2.   FREQUENCY RESPONSE ANALYZER –  
      THE CORRELATION APPROACH  
 
 The frequency response analysis is a simple method for 
obtaining the detailed information about the considered linear 
system. The steady-state response ( )y t  of  a stable system to  
an  input  ( ) sin( )u t a t= ω   (1) 
is given by  ( ) sin( ) ( )y t b t n t= ω +ϕ + , (2) 
where t  is the time, ω  is the angular frequency, and ( )n t  is 
a measurement noise signal. If we let ( )G s be the system 
transfer function, then the amplitude and phase of the system 
frequency response can be computed as  

 ( ) bG j
a

ω = ,      ( ) ( )G jω = ϕ ω�  .     (3)  

Thus, several sinusoidal test signals at different frequencies 
should be used to measure points on the system frequency 
response (NYQUIST diagram or BODE plots). The not-so- 
simple problems of significant noise and/or process 
nonlinearity that usually occur in engineering systems can be 
handled with a setup given in Fig. 1 [2]. Moreover, both 
problems of noise corruption and non-linear distortion are 
overcome in the measurement scheme in Fig. 1. First of all 
the measured system output is multiplied with a sine and 
cosine signal of the frequency of the system input ω . The 
products are then integrated for a specified measurement time 

mT . As the averaging time increases, the contribution of all 
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unwanted frequency components in ( )y t  goes to zero, and 
the integrator outputs ( s m( )y T , c m( )y T ) become constant 
values that depend only on the gain and phase of the 
considered system transfer function at the test frequency. 
This experiment should be repeated for a number of 
frequencies in a certain frequency band.  
 
 Therefore, the gain and phase of the system frequency 
response can be calculated using the following equations: 

 2 2
m m

2( ) ( ) ( )s c
m

G j y T y T
aT

ω = +  , 

and      (4) 

 s m

s m

( )
( ) arctg

( )
y T

G j
y T

ω =�   . 

 Note that it is recommended to use the four quadrant 
inverse tangent function, as well as the unwrap algorithm in 
order to keep the phase continuous over the π - borders. 

 

 
Fig.1. Block-diagram of the correlation frequency response 

analyzer 
  
 The above correlation method is based on a few 
assumptions that should be done. 
♦ Taking into account some a priori information about the 
considered process, it is possible to choose the proper 
frequency interval for testing. 
♦ In determining the amplitude of the input signal ( )u t , the 
linearity of the system should be preserved. 
♦ The desired accuracy and low noise sensitivity can be 
achieved by selecting a sufficient long measurement time mT  
that should be an integer multiple of the test frequency period 

oT , i.e.     

 o
m 2

kT
T = ,  1, 2,3,k = K    . (5) 

 Under these conditions, the average of the integrated 
noise is zero, which implies that the desired accuracy can be 
achieved even in case of low signal-to-noise ratio (SNR) [2]. 
 
 Since the standard Simulink block library does not 
provide any Frequency Response Analyzer (FRA) block, the 
above described correlation method is implemented in 
MATLAB®Simulink, performing all necessary calculations 
automatically for each value specified in the angular 
frequency vector [4].  
 
 To demonstrate the merits of the correlation method the 
developed MATLAB®Simulink based frequency response 
analyzer (FRA) can be used in case of the linear time-
invariant system with known transfer function, and compare 

the obtained characteristics with diagrams provided by using 
MATLAB® in-built function bode or nyquist. In this paper, 
the described method will be illustrated with two examples. 
 
3.  PRACTICAL EXAMPLES 
 
3.1  Mass-Spring-Damper System 
 
 Fig. 2 vizualizes one of the variety of configurations to be 
obtaind with the ECP Model 210 Rectilinear Plant by using 
springs of varying stiffness [6]. A single drive motor provides 
actuation to the system via the first mass, and position 
measurements ( )ix t , 1, 2i =  are taken by quadrature 
encoders.    
 

 
 

Fig.2. The scheme of the electro-mechanical plant 
 
 The equations for the considered mass-spring system may 
be found using Newton's laws to write force balance 
equations in matrix notation as  
 ( ) ( ) ( ) ( )t t t t+ + =mx cx kx F&& & ,  
where  (6) 

 1
2

( )( ) ( )
x tt x t

⎡ ⎤= ⎢ ⎥⎣ ⎦
x , 1

2

0
0

m
m

⎡ ⎤= ⎢ ⎥⎣ ⎦
m , 

2

0
c
⎡ ⎤= ⎢ ⎥⎣ ⎦

c , 

  1 2 2
2 2 3

k k k
k k k
+ −⎡ ⎤= ⎢ ⎥− +⎣ ⎦

k , and   ( )( )
0

f tt ⎡ ⎤= ⎢ ⎥⎣ ⎦
F .  

 
 Using the values of the parameters that can be found in 
the literature [5],[6], the above motion equation results in 
transfer function vector as follows 

 

2
1

2

( ) 0.5882 4.412 612.7
( ) ( )( )
( ) 392.2

( ) ( )

X s s s
F s ss
X s
F s s

⎡ ⎤⎡ ⎤ + +
⎢ ⎥⎢ ⎥ Δ⎢ ⎥⎢ ⎥= =
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ Δ⎢ ⎥⎣ ⎦ ⎣ ⎦

G  ,  

where   (7) 
 4 3 2( ) 7.5 1983 7059 666700s s s s sΔ = + + + + . 
 
 Thus, the plant models are fourth order with two lightly 
damped poles and either two or no zeros. Below, we discuss 
only the first plant model with transfer function 

1 1( ) ( ) ( )G s X s F s= .  
 
 Suppose that the output signal 1( )x t  has been corrupted 
by some additive noise. In this subsection we will 
demonstrate that, under assumptions given in the previous 
section, the developed frequency response analizer (FRA) 
will be robust respect to the significant measurement errors.  
 
 Namely, suppose that the analzyer is implemented by 
using a corrupted measurement ( )y t , instead of the true 
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system output 1( )x t . The response data, estimated by using 
FRA, can be visualized in two different ways: via the 
NYQUIST diagram, or via the BODE plots. Both views are 
shown in Figs. 3 and 4, and as can be seen, the estimated 
responses approach the frequency characteristics obtained 
with the mathematical input/output model (7). Moreover, 
there is a complete matching of the responses when the 
signal-to-noise ratio (SNR) is approximately equal to 1 (Fig. 
3a). Minor deviations can be seen in Figs. 3b and 4 for ten 
times smaller signal-to-noise ratio. 

 
(a) 

 
(b) 

 
Fig.3. Frequency responses of the subsystem given by 

transfer function 1( )G s  for different SNR values:  
(a) 1SNR � ; (b) 0.1SNR � . 

  
3.2  First- order hold device  
  
 It is well-known that the output of  the first-order hold 
(FOH) can be described as 

 
[ ]

h1
( ) ( 1)

( ) ( ) ( )
x kT x k T

x t x kT t kT
T

− −
= + −  (8) 

( 1)kT t k T≤ < + ,   1, 2,k = K  , T − is sampling period, and 
( )x t − is input signal. 

 
Fig.4. The NYQUIST plots  for mass-spring damper system 

example and 0.1SNR � .  
  
 
 Consider the control structure given in Fig. 5. In order to 
show that this circuit implements a first-order hold [7], let we 
define the auxiliary transfer function to be 

 h0
1( ) ( )G s G s

Ts
= ,  (9) 

where h0
1 e( )

sT
G s

s

−−
=  is the zero-order hold transfer 

function. Now, we can write relations among Laplace 
transform as 
 h0( ) [ ( ) ( )] ( )C s G s G s E s∗= + , (10) 

 ( ) ( ) ( ) ( )E s X s G s E s∗= − , (11) 

and after sampling        ( )( )
1 ( )

X sE s
G s

∗
∗

∗
=

+
 . (12) 

We can readily calculate that 

 e( )
1 e

Ts

TsG s
−

∗
−

=
−

, (13) 

and if we substitute (12) and (13) in (10) we obtain 

 
( )h0

h1

1( ) ( ) 1 1 e ( )

( ) ( ) .

TsC s G s X s
Ts

G s X s

− ∗

∗

⎛ ⎞= + −⎜ ⎟
⎝ ⎠

=

 (14) 

 Then the associated transfer function of the FOH is 

 2
h1 h0

1( ) ( )TsG s G s
T
+

= .  (15) 

 

 
 

Fig.5. Block-diagram of the first-order hold device  
 

 Since the transfer function (15) is not a rational function, 
it is suitable to find a finite-dimensional rational transfer 



 

 113

function 9,10 ( )G s  by using PADÉ approximation of order 
(9,10) . The information used for this example was taken 
from the paper [4].  
 
 Fig. 6 visualizes the sinusoidal input ( )x t , the output of 
the sampler/first-order hold h1( )x t , as well as the response of 

the function 9,10 ( )G s corrected by T  according to sampling 
theory. A relative low sampling frequency of 10 samples per 
cycle is adopted.  

 
Fig.6. Responses of  FOH  to sine wave input 

 
 Some results of frequency response analysis are presented 
in the form of the BODE and NYQUIST diagrams, which are 
given for sampling period 0.01 sT =  in Figs. 7 and 8, 
respectively. The curves denoted by 'circle' symbol represent 
the frequency responses of FOH device determined by the 
considered correlation technique. The curves denoted by 'star' 
symbol are the BODE (NYQUIST) responses of the rational 
approximation 9,10 ( )G s  of the transfer function h1( )G s given 
by (15). It can be concluded that the correlation technique 
provides a quite fine estimation of the frequency responses, 
with good fits to the amplitude and phase of 9,10 ( )G s . 
However, at higher frequencies the responses (the phase 
responses, particularly) are distorted, which can be mainly 
attributed to approximation errors.  
 

 
Fig.7. Frequency responses of  first-order hold device for 

sampling time of 0.01 sT =  
 
4.  CONCLUSION 
 
 The paper presents a frequency response analyzer based 
on the correlation technique and implemented in 
MATLAB®Simulink environment. To verify that the 

developed analyzer works properly, it was tested on two 
examples. The first example is an electromechanical system 
that works even under the condition of low signal-to-noise 
ration, and the second one is a circuit with   non-rational 
transfer function. Based on the presented results it is possible 
to conclude that the developed analyzer provides a quite fine 
estimation of the system frequency responses.  

 
 
Fig.8. The NYQUIST plots  for first-order hold device example 
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