INFOTEH-JAHORINA Vol. 8, Ref. E-V-1, p. 690-696, March 2009.

EKONOMIKA TESTIRANJA SOFTVERA

THE SOFTWARE TESTING ECONOMICS
Ljubomir Lazić, Amel Kolašinac, Dženan Avdić, Technical Faculty, State University of Novi Pazar
Vuka Karadžića bb, 36 300 Novi Pazar, SERBIA, llazic@np.ac.yu, akolisinac@np.ac.yu, dzavdic@np.ac.yu
Sadržaj – Prema nekim istraživanjima 80% ukupnih troškova razvoja softvera troši se na otkrivanje i otklanjanje grešaka u softveru. Proces optimizacije kvaliteta softvera (SQO) je pro-aktivan pristup koji integriše zaposlene, procese i tehnologiju u odnosu na specifičan cilj: sinhronizacija poslovnih ciljeva sa procesom razvoja softvera radi postizanja konkurentne prednosti na tržištu. Iz ugla projektanta, postoje dve dobiti nakon implementacije najbolje prakse u izradi kvalitetnog softvera: profit i vreme. Ulaganje u kvalitet softvera, posebno u proces testiranja softvera, kao i svako drugo ulaganje sadrži neposredni trošak i očekivani povraćaj u novcu (ROI). U ovom radu, definisane su tehnike za analizu i interpretaciju povraćaja investicije u testiranje softvera (ROTI) kroz: finansijski ROI i skraćenje razvoja softvera. Takođe, razmatran je jedan hipotetički projekat poboljšanja kvaliteta softvera preko unapređenja procesa testiranja i povraćaja investicije. 
Abstract - According to the USA National Institute of Standards and Technology (NIST), 80% of the software development costs of a typical project are spent on identifying and fixing defects. From a developer’s perspective, there are two types of benefits that can accrue from the implementation of good software quality practices and tools: money and time. The investment in software quality, particularly in software testing, like any investment has an immediate cost, with an expected net payback. There is where Quality Cost Analysis could be used as effective tool to make them understand the ROI. In this paper, we will define techniques to, analyze and interpret return on the testing investment (ROTI) values: Financial ROI and Schedule Benefits. Also, we will use a hypothetical case study to illustrate the use of this cost of quality technique to analyze return on the testing investment.
1.
INTRODUCTION
In today’s economy, software quality has become a key business issue. For IT, meeting increasingly aggressive release cycles and service-level agreements are key drivers. According to the USA National Institute of Standards and Technology (NIST), 80% of the software development costs of a typical project are spent on identifying and fixing defects [1]. For independent software vendors (ISVs), getting product to market faster while constantly looking at ways to lower maintenance and service costs is a constant challenge. 

To address this challenge, organizations need to look at the big picture, and do a better job aligning business drivers and requirements with technology investments. Technology and quality assurance (“QA”) groups also need to involve senior management when planning software quality initiatives so that there is greater awareness of the importance of testing and performance management efforts and sufficient funding as applications grow in complexity and release cycles shrink.
 The greatest innovation in Test-driven development (TDD) is one of the central techniques of Extreme Programming (XP) [2].
The emergence of mainstream automated testing tools and processes over the past several years are advances and improvements in test management and performance monitoring have enabled quality assurance, or “QA” processes and best practices to be applied earlier in the software development cycle. Earlier and more frequent testing has multiple benefits, from better quality to a lower cost of fixing defects. TDD is also known as test-first programming: write down a simple test for each small piece of functionality before you start coding the functionality.  TDD guides you through the whole life-cycle of an XP project.   There is no design and no explicit testing phase.  Both are replaced by automated tests which are executed continuously to ensure high program quality. For these reasons, delivering software in a timely, cost-effective manner with a minimum of defects has become a corporate imperative. Driven by ongoing budget pressures, businesses are looking at every way to lower the total cost of ownership (TCO) of applications across their lifecycle, from increasing the productivity of developers, testers and service personnel, and even to the end-users themselves. Software Quality Optimization (SQO) is a forward-thinking approach to software quality that integrates people, processes and technologies toward one specific goal: it ensures that software deployment is synchronized with business goals to achieve competitive advantage. SQO is a continuous, iterative process throughout the application lifecycle resulting in zero-defect software that delivers value from the moment it goes live.

In this paper, we will:

• Explore the true costs of software defects and their impact on application performance;
• Challenge the traditional software testing process and demonstrate how quality processes implemented throughout the application lifecycle can result in measurable performance improvements;
• We present an economic model for the return on investment of TDD (ROTI) based on a variety of ways of calculating ROI.
Also, this paper proposes an approach for addressing these needs, via a “top-down” ROI framework developed as part of A Framework of Integrated and Optimized Software Testing Process (IOSTP) [3,4] as a result of primary customer research as well as analysis of industry trends. This framework starts with the most common business drivers for investing in software quality optimization today: meeting market requirements, lowering operational costs, and improving productivity. 
3.  COST OF SOFTWARE QUALITY (COSQ)
3.1 ECONOMICS OF QUALITY 
Cost of quality represents any and all costs that organization incurs from having to repeat a process more than once in order to complete the work correctly. Cost of software Quality (CoSQ) is useful to enable our understanding of the economic trade-offs involved in delivering good-quality software. Commonly used in manufacturing, its adaptation to software offers the promise of preventing poor quality but, unfortunately, has seen little use to date. Different authors and researcher have used different ways to classify components for quality cost [5-9], if we look carefully their understanding about various components are approximately the same.
3.2 STATEMENT OF PROBLEM
A key metric for measuring and benchmarking the software testing efficacy is by measuring the percentage of possible defects removed from the product at any point in time. Both a project and process metric – can measure effectiveness of quality activities or the quality of a all over project by:

DRE = E/(E+D) 



   
   (1)

Where E is the number of errors found before delivery to the end user, and D is the number of errors found after delivery. The goal is to have DRE close to 100%. The same approach is applied to every test phase denoted wit i as shown on Fig. 1:

DREi = Ei / (Ei + Ei+1)


  
   (2)

Where Ei is the number of errors found in a software engineering activity i, and Ei+1 is the number of errors that were traceable to errors that were not discovered in software engineering activity i. The goal is to have this DREi approach to 100% as well i.e., errors are filtered out before they reach the next activity. Projects that use the same team and the same development processes can reasonably expect that the DRE from one project to the next are similar. 


For example, if on the previous project, you removed 80% of the possible requirements defects using inspections, then you can expect to remove ~80% on the next project. Or if you know that your historical data shows that you typically remove 90% before shipment, and for this project, you’ve used the same process, met the same kind of release criteria,  and have found 400 defects so far, then there probably are ~50 defects that you will find after you release. How to combine Defect Detection Technique (DDT) to achieve high DRE, let say >85%, as a threshold for IOSTP required effectiveness [2-5], is explained in section 4. which describe optimum combination of software defect detection techniques choices.
[image: image1.png]Deveiopme

= o
T e | [ | o] o] e





Fig. 1 Fault Injection and Fixing Model

Note that the defects discussed in this section include all severity levels, ranging from severity 1: activity stoppers, down to severity 4. Obviously, it is important to measure defect severity levels as well as recording numbers of defects.
3.3 THE REAL COST OF SOFTWARE DEFECTS 

It is obvious that the longer a defective application evolves the more costly it is to repair. But how much more?  The answer might surprise you. According to the collected metrics of one software development organization, a bug that costs $1 to fix on the programmer’s desktop costs $100 to fix once it is incorporated into a complete program, and many thousands of dollars if it is identified after the software has been deployed in the field [8], as described on Fig. 2. Barry Boehm, one of the industry’s leading experts on software quality, has published several studies [9] over nearly three decades that demonstrate how the cost for removing a software defect grows exponentially for each downstream phase of the development lifecycle in which it remains undiscovered. Since the original study, Boehm’s results have been confirmed in a number of subsequent studies [5-7]. Further, another major research project conducted recently by the United States Department of Commerce, National Institute of Standards and Technology showed that in a typical software development project, fully 80% of software development dollars are spent correcting software defects. The same  NIST study also estimated that software defects cost the U.S. economy, alone, $60 billion per year [1]. Many organizations view the software development lifecycle, in a Conventional way, as a linear process with discrete functions: design, develop, test and deploy. In reality, the software development lifecycle is a cyclical function with interdependent phases. Quality assurance has a role in every phase of that lifecycle, from requirements review and test planning, to code development and functional testing, to performance testing and on into production.

[image: image2.emf]
Fig. 2 Engineering Rules for Cost Of Defect Removal [8]

It was unanimously agreed that quality and quality assurance is more than strictly testing at the end of the development process. Starting quality initiatives early and paying attention to quality throughout the development, deployment and production effort is key in order to achieve a baseline goal of zero-defect software.

4.  SOFTWARE TESTING ECONOMICS - HYPOTHETICAL CASE STUDY
4.1 TECHNIQUES TO ANALYZE RETURN ON THE TESTING INVESTMENT (ROTI)
The ROTI model compares the development cost for a conventional  project  with  the  development  cost  for  a project that uses TDD. The investment cost is the additional effort necessary to complete the TDD project as compared to the conventional project.  The life cycle benefit is captured by the difference in quality measured by the number of defects that the TDD team finds and fixes, but the conventional project does not. 

This defect difference is transformed into a monetary value using the additional developer effort corresponding to finding and fixing these defects in the conventional project.  The concepts of the life cycle benefit and the investment cost in our context are depicted in Fig. 3. The upper horizontal line corresponds to the conventional project with additional quality assurance phase! The lower horizontal line corresponds to the TDD project. Our model captures the return on investment for an experienced TDD team in software testing process improvement (SPI).
4.2 FINANCIAL ROI
From a developer’s perspective, there are two types of benefits that can accrue from the implementation of good software quality practices and tools: money and time. A financial ROI looks at cost savings and the schedule ROI looks at schedule savings.

Direct financial ROI is expressed in terms of effort since this is the largest cost on a software project. There are a number of different models that can be used to evaluate financial ROI for software quality. 

The first is the most common ROI model. We will show that this model is not appropriate because it does not accurately account for the benefits of investments in software projects. This does not mean that that model is not useful (for instance, accountants that we speak with do prefer the traditional model of ROI), only that we will not emphasize it in our calculations.

[image: image3.emf] 

Fig. 3 Overview of benefit cost ratio calculation

Methods for return on investment (ROI) include benefit, cost, benefit/cost ratio, ROI, net present value, and breakeven point are given in Fig. 4.
[image: image4.emf]
Fig. 4 ROI metrics showing simplicity of return on investment formulas and their order of application
ROI methods in general are quite easy, indispensable, powerfully simplistic, and absolutely necessary in the field of software process improvement (SPI). It is ironic that ROI methods are not in common practice. The literature does not abound with ROI methods for SPI. The ROI literature that does exist is very hard to locate, appears infrequently, and is often confusing.
We also look at ROI at the project level, specially on return on the testing investment (ROTI), rather than at the enterprise level. ROI at the enterprise level (or across multiple projects) requires a slightly different approach which we will not address directly here.
The most common ROI model, and that has been used more often than not in software engineering, is shown below:

[image: image5.wmf]Investment

Test

Investment

Test

Saved

CoQ

Total

ROTI

×

×

-

×

×

=

1


     (3)

This ROTI model gives how much the Total Cost of Quality (CoQ) savings gained from the project were compared to the initial investment. Let us look at a couple of examples to show how this model works.

Let’s use a hypothetical case study to illustrate the use of this cost of quality technique to analyze return on the testing investment. Suppose we have a software product in the field, with one new release every quarter. On average, each release contains 1,000 “must-fix” bugs—unacceptable defects—which we identify and repair over the life of the release. Currently, developers find and fix 250 of those bugs during development, while the customers find the rest.

Suppose that you have analyzed the costs of internal and external failure. Bugs found by programmers costs $10 to fix. Bugs found by customers cost $1,000 to fix. We analize three cases of software development and testing process which provide Low Quality, Good Quality and High Quality Results.

Case 1: Low Quality Results

Case 1 is assumed to be a fairly small systems software project of 251 function points in size. Defect potentials are derived by raising the function point total of the application to the 1.25 power, which results in a total of 1,000 defects or 4 defects per function point [7]. Defect removal efficiency is assumed to be 75% overall.  The development team is assumed to be below level 1 on the CMM scale in  Software Development Process (SDP) which is unpredictable and poorly controlled ie. Ad hoc level.

As shown in the “Case 1 Testing” column in Fig. 5, our cost of quality is three-quarters of a million dollars. It’s not like this $750,000 expenditure is buying us anything, either. Given that 750 bugs escape to the field, it’s a safe bet that customers are mad!

Case 2: Good Quality Results

Case 2 is exactly the same size and the same class of software as Case 1. The project management desided to improve software testing process (STP) and invested in testing staff  $60,000 and test infrastructure $10,000 as shown in the “Case 2 Testing” column in Fig. 5.

The development team is assumed to be level 1 on the CMM scale. Defect removal efficiency is assumed to be 85% overall.  Defect removal operations consist of six test stages:  1) unit test, 2) new function test, 3) regression test, 4) integration test, 5) system test, and 6) external Beta test.

Case 3: High Quality Results

Case 3 is exactly the same size and the same class of software as Case 1.  The development team is assumed to be higher than level 3 on the CMM scale.  By means of more effective defect prevention such as Quality Function Deployment (QFD) and Six-Sigma the defect potentials are lower. Defect removal efficiency is assumed to be 95%.  Defect removal operations consist of nine stages:  1) design inspections; 2) code inspections; 3) unit test, 4) new function test, 5) regression test, 6) integration test, 7) performance test, 8) system test, 9) external Beta test.

To clarify the differences between the three case studies, note that both examples are exactly the same size, but differ in these key elements:

· CMM levels

· Defect prevention

· Defect potentials

· Defect removal efficiency

· Development schedules

· Development effort

· Development costs

[image: image6.png]A i B i [ i D

1 Testing Investment Options: ROI Analysis
2
3
4 |Testing resources Case 1 Case 2 Case 3
5 CHIM <1 Level CMM 1 Level CMM >3 Level
_6 |Staff S0 560,000 560,000
7 |Infrastructure S0 $10.000° 510,000
_8 |Tools S0 S0 $12.500°
9 Total Test Investment $0 $70,000 $82,500
10

Development

(Requirement, Design, Code)
Must-Fix Bugs Found 250 250 350
Fix Cost - $10 per bug (intemal Failure) 52,500 52,500 53,500

Testing
Must-Fix Bugs Found 0 600 600
Fix Cost - 5100 per bug (intemal Failure) 50 560,000 560,000

Customer Support
Must-Fix Bugs Reported 750 150 50
Fix Cost - 51000 per bug (Extemal Failure) 5750,000 510,000 550,000

Cost of Quality (CoQ)

25| Conformance 50 570,000 582,500
26 |Nonconformance 5762.500 5212.500 5113500
27 Total CoQ $752,500 $282,500 $196,000
2
29 [Return on Investment (ROk) #NA 511% 515%
30

31 Return on Investment (ROl2) #NA 62% 4%





Fig. 5 Using Cost of Quality to Analyze two ways of Return on Investment calculation

Suppose we calculate that bugs found by testers would cost $100 to fix. This is one-tenth what a bug costs if it escapes to our customers. So, we invest $70,000 per quarterly release in a Case 2 testing process. The “Case 2 Testing” column shows how profitable this investment is. The testers find 600 bugs before the release, which cuts almost in 80% the number of bugs found by customers. This certainly will make the customers happier. This process improvement will also make the Chief Financial Officer happier, too: Our total cost of quality has dropped to about half a million dollars and we enjoy a nice fat 571% return on our $70,000 investment.

In some cases, we can do even better. For example, suppose that we invest $12,500 in test automation tools and Inspection activities. Let’s assume we intend to recapture a return on that investment across the next twelve quarterly releases. Would we be happy if that investment in test automation helped us find about 67% more bugs?

Finding 350 bugs in development phases and 600 bugs in the test process would lower the overall customer bug find count for each release to 50. Deployment of  more formal and rigorous STP in which 950 bugs out of 1000 were removed, ie. Total DRE 95%. Certainly, customers would be much happier to have the more-thoroughly tested system. In addition, cost of quality would fall to a little under $200,000, a 575% return on investment (ROI). 

4.3 SCHEDULE BENEFITS
If software quality actions are taken to reduce development cost, then this will also lead to a reduction in development schedule. We can easily calculate the reductions in the development schedule as a consequence of reductions in overall effort. In this section we will outline the schedule benefits of quality improvements. To do so we will use the schedule estimation model from COCOMO [9].

It is instructive to understand the relationship between project size and schedule as expressed in the COCOMO II model. This is illustrated in Fig. 6. Here we see economies of scale for project schedule. This means that as the project size increases, the schedule does not increase as fast. The three lines indicate the schedule for projects employing different levels of practices. The lower risk and good practice projects tend to have a lower schedule.

Another way to formulate the ROTI model in Eqn. 3 which will prove to be handy is:


[image: image7.wmf]CoQ

Total

Original

CoQ

Total

New

CoQ

Total

Original

ROTI

×

×

×

×

-

×

×

=

2

    (4)
The New Total CoQ is defined as the total cost of software quality the project delivered after implementing the quality improvement practices or tools as in our Case 2 and Case 3. This includes the cost of the investment itself. Let us look at some examples. For Case 2 we have:


[image: image8.wmf]%

62

62

.

0

500

,

752

$

500

,

282

$

500

,

752

$

2

=

=

-

=

ROTI


This means that in Case 2 project, the investment only saved 62% of overall project cost.

[image: image9.emf]
Fig. 6 Relationship between project size and schedule in COCOMO II.

Now for Case 3 we have:


[image: image10.wmf]%

74

74

.

0

500

,

752

$

000

,

196

$

500

,

752

$

2

=

=

-

=

ROTI

, ie. the same investment saved 74% of overall project cost.

We can then formulate the New Total CoQ as follows:

[image: image11.wmf])

1

(

2

ROTI

CoQ

Total

Original

CoQ

Total

New

-

×

×

×

=

×

×


Now, we can formulate the schedule reduction (∆SCED or SCEDRED) as a fraction (or percentage) of the original schedule as follows:

[image: image12.wmf]Schedule

Original

Schedule

New

Schedule

Original

SCED

×

×

-

×

=

D

      (5)
By substituting the COCOMO equation for schedule, we now have:


[image: image13.wmf])

002

.

0

(

28

.

0

)

002

.

0

(

28

.

0

)

002

.

0

(

28

.

0

5

1

5

1

5

1

å

å

-

å

=

D

=

=

=

×

´

×

+

×

´

×

+

×

´

×

+

j

j

j

j

j

j

SF

Original

SF

New

SF

Original

PM

PM

PM

SCED

 (6)
where:

PMOriginal - The original effort for the project in person-months

PMNew -
The new effort for the project (after implementing quality practices) in person-months

SFj  -  
A series of five Scale Factors that are used to adjust the schedule (precedentedness, development flexibility, architecture / risk resolution, team cohesion, and process maturity).

Now, by making appropriate substitutions, we have:

[image: image14.wmf])

002

.

0

(

28

.

0

)

002

.

0

(

28

.

0

2

)

002

.

0

(

28

.

0

)

002

.

0

(

28

.

0

5

1

5

1

5

1

5

1

)

1

(

å

ú

ú

û

ù

ê

ê

ë

é

å

-

´

å

-

å

=

D

=

=

=

=

´

+

´

+

´

+

´

+

j

j

j

j

j

j

j

j

SF

Original

SF

SF

Original

SF

Original

PM

ROTI

PM

PM

SCED


Which simplifies to:


[image: image15.wmf])

002

.

0

(

28

.

0

2

5

1

)

1

(

1

å

-

-

=

D

=

´

+

j

j

SF

ROTI

SCED

                 (7)
The relationship between cost savings and schedule reduction is shown in Fig. 7. As can be seen, the schedule benefits tend to be at smaller proportions than the cost benefits. Nevertheless, shaving off 10% or even 5% of your schedule can have nontrivial consequences on customer relationships and market positioning.
4.4 INTERPRETING THE ROI VALUES
In this section we will explain how to interpret and use the ROI values that are calculated. First, it must be recognized that the ROI calculations, cost savings, and project costs as presented in our models are estimates. Inevitably, there is some uncertainty in these estimates. The uncertainty stems from the variables that are not accounted for in the models (there are many other factors that influence project costs, but it is not possible to account for all of these since the model would then be unusable). Another source of uncertainty is the input values themselves.

These values are typically averages calculated from historical data; to the extent that the future differs from the past these values will have some error. Second, note that the calculated ROI values are for a single project.
[image: image16.png]06

(uononpeyy einpeyos) ARIAZOS

ROL:




Fig. 7 The relationship between cost savings and schedule reduction for up to 50% cost savings. The assumption made for plotting this graph was that all Scale Factors were at their nominal values.

A software organization will have multiple on-going and new projects. The total benefit of implementing software quality practices to the organization can be calculated by generalizing the results to the organization. For example, if the ROI for a single project is say a 15% saving. Assuming that the input values are the same for other projects in the organization, then we can generalize to the whole organization and estimate that if software quality practices are implemented on all projects in the organization, the overall savings would be 15%. If the software budget for all the projects is say 20 million, then that would translate into an estimated sa ving of 3 million. Note that this is not an annual saving, but a saving in total project budgets hat may span multiple years (i.e., for the duration of the projects). To annualize it then the 15% savings must be allocated across multiple years. If you are implementing quality improvement on a single project, then these costs would have to be deducted from the single project savings. If you are implementing quality practices in the whole organization, then these costs will be spread across multiple projects. In such a case, these costs would be deducted from the organizational savings (the calculation of which is described above).


5. CONCLUSION
CoSQ is a technique that is most useful in enabling our understanding of the economic tradeoffs involved in delivering good quality software. If software quality actions are taken to reduce development cost, then this will also lead to a reduction in development schedule. We can easily calculate the reductions in the development schedule as a consequence of reductions in overall effort as we demonstrated in one hypothetical case study. 
In this paper, we:

• Explored the true costs of software defects and their impact on application performance;
• Challenged the traditional software testing process and demonstrated how quality processes implemented throughout the application lifecycle can result in measurable performance improvements;
• We presented an economic model for the return on investment of TDD (ROTI) based on a variety of ways of calculating ROI.
Also, this paper proposes an approach for addressing these needs, via a “top-down” ROI framework developed as part of A Framework of Integrated and Optimized Software Testing Process (IOSTP) [3,4] as a result of primary customer research as well as analysis of industry trends. This framework starts with the most common business drivers for investing in software quality optimization today: meeting market requirements, lowering operational costs, and improving productivity.
When these measures were introduced into large corporations such as IBM and ITT, in less than four years the volumes of delivered defects had declined by more than 50 percent, maintenance costs were reduced by more than 40 percent, and development schedules were shortened by more than 15 percent. There are no other measurements that can yield such positive benefits in such a short time span. Both customer satisfaction and employee morale improved, too, as a direct result of the reduction in defect potentials and the increase in defect removal efficiency levels.

REFERENCES
[1] National Institute of Standards & Technology, US Dept of Commerce, The Economic Impacts of Inadequate Infrastructure for Software Testing, May 2002.

[2] M. Müller, "About the Return on Investment of Test-Driven Development", ICSE'03, Portland, Oregon, 2003. 

[3] Lj. Lazić, A. Kilašinac, Dz. Avdić, "The Software Quality Economics Model for Software Project Optimization", WSEAS TRANSACTIONS on COMPUTERS , Issue 1, Volume 8, January 2009, p21-47.
[4] Lj. Lazić, N. Mastorakis, "Software Testing Process Improvement to achieve a high ROI of 100:1", 6th WSEAS Int. Conf. On MATHEMATICS AND COMPUTERS IN BUSINESS AND ECONOMICS (MCBE’05), March 1-3, Buenos Aires, Argentina 2005.
[5] R. Black, Managing the Testing Process, Second Edition. Wiley, New York, 2002.

[6] S. H. Kan. Metrics and Models in Software Quality Engineering, Second Edition, Addison-Wesley, 2003.
[7] J. Capers. Estimating Software Costs. 2nd edition. McGraw-Hill, New York: 2007.

[8] S. McConnell, Professional Software Development, Addison Wesley, 2004, ISBN 0-321-19367-9 B. Boehm. Software Engineering Economics; Prentice Hall, Englewood Cliffs, NJ; 1981. 

[9] B. Boehm, C. Abts, A. Brown, S. Chulani, B. Clark, E. Horowitz, R. Madachy, D. Reifer and B. Steece Software Cost Estimation with COCOMO II, Prentice Hall, 2000. 








































� This work was supported in part by the Ministry of Science and Technological Development of  the Republic of Serbia under Grant No. TR-13018.





11
690

_1296489622.unknown

_1296490249.unknown

_1296666776.unknown

_1296666791.unknown

_1296666649.unknown

_1296489631.unknown

_1296489380.unknown

_1296489584.unknown

_1296156629.unknown

