INFOTEH-JAHORINA Vol. 8, Ref. B-II-6, p. 156-160, March 2009.

JAVA ZASNOVAN ZAŠTIĆENI MOBILNI WEB SERVIS

JAVA BASED SECURE MOBILE WEB SERVICE SCENARIO

Goran Đorđević, The Institute for Manufacturing banknotes and coins NBS, Pionirska 2, Beograd.
Milan Marković, Banca Intesa, Bulevar Milutina Milankovića 1c, Novi Beograd
Sadržaj – U radu je prikazan dizajn i način programiranja java aplikacija na mobilnom telefonu koji sigurnim kanalom povezan sa web servisima. Opisan je scenario za implementaciju zaštićenog web servisa gde klijen -mobilna aplikacija generiše digitalni potpis koristeći smart karticu. Šifrovanje podataka se realizuje u Xlet mobilnoj aplikaciji koja je instalirana na mobilnom telefonu koji poseduje podšku za CDC konfiguraciju. Mobilna aplikacija koristi standardni WS-Security mehanizam za prenos digitalnog potpisa u okviru SOAP zahteva koga šalje ka udaljenom Web servisu. Web servis vrši obradu primljenog zahteva i šalje SOAP poruku odgovora ka mobilnoj aplikaciji koja je i poslala izvorni zahtev. Java bazirana mobilna aplikacija vrši obradu primljene poruke i prikazuje poruku statusa na displeju mobilnog telefona. Opisani scenario se koristi u okviru projekta Evropske unije pod nazivom SWEB (Secure, interoperable cross border m-services contributing towards a trustful European cooperation with the non-EU member Western Balkan countries)
Abstract - In this paper, a design and programming of JAVA applications on mobile phones that securely connect to Web services are described. We considered a Web service scenario where mobile phone user produces a cryptographic signature in the JAVA application using the smart card. Data is encrypted using a crypto Xlet JAVA application installed on mobile phone with CDC configuration. The user uses standard WSS signature mechanism (Web Service Security) to wrap a cryptographic signature into the SOAP request and sends the request over to the remote Web service endpoint implementation. Web service performs request processing and sends SOAP response back to the Java based mobile phone application. The mobile application processes the SOAP response and display the status to the mobile user. The example described is carried out within the EU IST (Secure, interoperable cross border m-services contributing towards a trustful European cooperation with the non-EU member Western Balkan countries).
1. INTRODUCTION

Java 2 Micro Edition (J2ME) is a runtime environment for resource-constrained environments. J2ME includes specific virtual machines, configurations and profiles for various environments and needs. With an appropriate configuration and profile, J2ME applications could be executed within pagers, mobile phones, PDAs, set-top boxes and automobile navigation systems, just to mention some [1].
The Java Specification Request 172 (JSR 172) specifies standardized client-side technology to enable J2ME applications to consume remote services on typical web services architectures.

JSR 172 defines a standardized API that J2ME clients can use to invoke SOAP and XML-based Web services. This API is in the form of an optional package for J2ME, and is referred to as Web Services APIs (WSA) for J2ME. WSA is actually a subset of the Java API for XML-based Remote Procedure Call (JAX-RPC) defined by JSR 101 [2].
JAX-RPC uses the popular concept of Web service “endpoints” and “clients”. Endpoints expose Web services and JAX-RPC clients invoke – access, consume or make use of – the services exposed by endpoints.
WSA, as a subset of JAX-RPC, only includes the set of interfaces that are used to define Web service clients. This makes sense because J2ME devices are not likely to expose their own Web service endpoints. J2ME devices are only expected to consume Web services exposed by service endpoints.
When examining a JAX-RPC application, in our case an application based on Java ME, we should focus on three main areas of interest: the service consumer, the service provider, and the network.
The Service Consumer consists of the application, the JAX-RPC stubs for the service of interest, and the JAX-RPC runtime. On Java ME the JAX-RPC stubs and runtime are based on the JSR 172 subset. The JAX-RPC stubs are proxies created from a web service descriptor that represent the remote service and that hide the complexity of data marshalling and interfacing with the JAX-RPC runtime. The JAX-RPC runtime is responsible for managing the remote invocations and the network operations.
The Service Provider consists of the service classes that are accessible through a web server and a SOAP engine. There also is the Web Services Descriptor Language (WSDL) description, an XML document that describes the web service itself, the method signatures, and the binding information. The web server, for example the Apache HTTP Server, provides the web transport, and the SOAP engine, for example Apache's Axis, provides the JAX-RPC SOAP runtime for service invocation. The service ties are proxies for the actual service classes, and are responsible for handling details such as data marshalling. The service classes provide the actual service implementation [3].
The Network represents the Web, the transport (typically HTTP), and the SOAP-encoded messages.
2. IMPLEMENTATION ASPECTS

With the ever present concern over security, software applications must consider how to secure confidential data. A mobile application is not immune from privacy concerns. In fact, mobile devices and their software application have special considerations given that most people carry these devices wherever they go.

Bouncy Castle APIs - In order to encrypt sensitive data we used Bouncy Castle Cryptography APIs. Bouncy Castle is an open source Java API for encrypting and decrypting data. There is a lightweight package that is suitable for MIDP applications where only a fraction of the API will be used at any one time.
Obfuscation process - One problem inherent to most mobile devices is the limited amount of memory. As with most any library you use, only a small portion of the code is typically needed by your application. One common way to eliminate unused code, and at the same time make it more challenging to reverse engineer an application, is to use a Java obfuscator.
Reverse engineering of Java programs is not too difficult. As a matter of fact, there are free decompilers that will do the work for you. Ta make it a little more challenging to reverse engineer applications, many Java developers use an obfuscator to rename classes, methods, and fields. The intention of this renaming process is to make the source more unreadable.
A side effect of the obfuscation process is the reduction of class file size. This is accomplished in two steps. First, a lot of bytes can be saved by replacing names of classes, methods, and field names that are one or two characters in length. In addition, obfuscators will remove unused classes, methods, and fields. The combination of these two steps can significantly reduce the size of the final application. We used open source obfuscator ProGuard.

Security and Trust Services API (SATSA) - Security and Trust Services API is a new API that provides additional security capabilities to the J2ME CLDC platform. It specifies a collection of APIs that provide security and trust services for J2ME CLDC by integrating a Security Element (SE).
The SE is a hardware or a software component in a J2ME device. It provides the following features:

· Secure storage to protect sensitive data.

· Cryptographic operations.
With these features, J2ME applications would be able to have secure key stores as well as encryption and decryption capabilities. These features could be used to provide security services for applications such as e-payments, mobile commerce, etc. A SE can be: (1) deployed as a smart card in wireless phones or, (2) can be implemented by a handset itself (e.g., embedded chips or special security features of the hardware) or, (3) may be entirely implemented in software [4].
The support for cryptographic smart cards is of particular interest to developers writing J2ME applications for smart phones. Keys and certificates can be stored on the smart card and data can be signed without the private key ever leaving the card. High-end smart cards are temper resistant and provide authentication schemes, such as requiring a PIN or a password before access to the smart card is granted. This way security is dependent on the smart card not being compromised. Private keys do not have to be stored on diverse insecure clients, enabling vendors to focus on keeping the smart card secure from physical tempering and, just as important, smart card API exploitation.
SATSA APIs - The SATSA specification defines for APIs, SATSA-APDU, SATSA-JCRMI, SATSA-PKI, and SATSA-CRYPTO. The first two APIs add functionality for smart card interaction. SATSA-APDU enables communication with smart cards using the Application Protocol Data Unit (APDU) protocol defined by the ISO7816-4 specification. SATSA-JCRMI enables high level communication with smart cards through the Java Card Remote Method Invocation Protocol (JCRMI).
SATSA-PKI enables applications to request digital signatures from an SE, hence providing authentication and possibly non-repudiation by using keys stored on a smart card. Client certificate management is also provided by SATSA-PKI, giving an application the opportunity to add or remove certificates from an SE. The most interesting part of the certificate management is the possibility to request generation of a new key-pair and then produce a Certificate Signing Request. The fact the client generates its own keys is one of the key factors needed to support non-repudiation in a system. Note that key generation is dependent on the SE, the SE might not support key generation at all. Hence, the SE must be chosen with care, considering the application requirements.
SATSA-CRYPTO offers cryptographic tools like message digests, digital signature verification, and ciphers. The API enables applications to store data encrypted and signed on a mobile device, ensuring both confidentially and integrity. Applications that require secure storage of highly sensitive information can therefore be realized. Note that it is up to the developer to decide which ciphers and digest algorithms to include. The SATSA specification recommends 3DES and AES as symmetric ciphers, RSA an asymmetric cipher, and SHA-1 as the digest algorithm. SHA1withRSA is the recommended algorithm for digital signatures [5].
3. SWEB ARCHITECTURE

SWEB uses defines an SWEB community, consisting of [6]:

· Citizens

· Civil servants

· Administrators

Depending on the scenario, it might be necessary to introduce some other roles, like delegates of either citizens or civil servants and several levels of administration here, but it is assumed that for the functional purpose of the SWEB system those roles doesn´t matter as they usually don´t influence the platform processes directly, but using itself delegates which are actually belonging to one of the groups mentioned.

Citizens are the primary users SWEB targets. Using a mobile device, they access the system, initiate requests or receive notifications pushed by the platform. Citizen delegates are handled like civil servants, as they can´t access the system for someone else, due to the nature of the SWEB authentication mechanism. Instead they are forced to get help by a civil servant, actually initiating the request.

Civil servants are the right hand of the SWEB platform. Where SWEB is only able to check requests for security constraints, Civil Servants may approve or decline requests on a semantic legal level that is elusive by computer systems. They are also necessary when it comes to delegate requests by other citizens or civil servants from other municipalities.

Administrators are those responsible for administration of the community as a whole or the platform and the involved community members in detail. In SWEB there are administrators that are actually handling the technical maintenance and administrators that are able to hand out certificates to civil servants.

Those three roles are actually directly mapped to system roles, when it comes to the technical realization. While administrators are mainly used for PKI administration and security certificate handling, civil servants and citizens are roles that need to be integrated into the platform logic directly to distinguish between them, when it comes to access control, authorization and to business logic decisions. Therefore the decision to use SAML assertions with integrated roles came naturally.

By using SAML together with WS-Security it was a small step to extend the server-server communications to use this technology as well. For that reason, internally there was a fourth role defined. The role of each server is important as it is necessary to be defined for intercommunication between the various SWEB platforms. However, although the communication is established between two servers, the documents delivered are meant to be assured and signed by civil servants, to assure responsibility by a human being. More on this issue can be found later on when it comes to definition of the Forwarding component, which is responsible for communication between municipality instances.

4. SWEB WEB SERVICE SCENARIO

A citizen of city A needs a certification for his principal residence in city A. He will contact the municipality of city A for that.

In this process, he sends a request to this municipality first. The municipality creates his mRCertificate. He gets a final notification message and can pick up his mRCertificate afterwards. See Figure 1 scenario I overview.

[image: image1.jpg]Cizen

1: send request()

4 retrieve mRCertiicate()

Muricoalty

]2+ create mRcertficate)

3+ send natfication() i

Figure 1. Municipality’s service overview
In a more detailed view, there are three system objects belonging to the municipality. It is the SWEB Platform, the local IT Infrastructure (legacy system) and the civil servant as the human actor. The citizen sends his request to the SWEB platform, which in return first sends a notification back about the incoming request and afterwards forwarding the request to the civil servant for approval. After this, the request is send to the legacy system, where the mRCertificate is created.
 After that, the civil servant has to approve this mRCertificate. Furthermore, there is a final notification send to the mobile to inform the citizen that he can pick up his mRCertificate. Finally, the mRCertificate needs to be retrieved by the citizen using the document retrieval service described before (See Figure 2).
[image: image2.jpg]Ctizen ‘SWEB Platform Leascy System vl servant

1: send request()

2t send natfication()

5.+ send request()

T §screste mRceniate(]

.

7+ send mRCerticate) |

9 send mRCartfiate() i

10+ send notfication()

11 retrieve mRCertficate()

12+ send nRCertitficatel)

‘ : rm

4 approve request()

approve mRCertiicate()

Figure 2. Municipality’a scenario details

5. FUNCTIONAL DESCRIPTION

The Java mobile client used for communication with SWEB platform will be developed by using J2ME CDC1.1 platform. According to this, a lot of technologies that exist in J2SE can be employed in J2ME application. J2ME cell phone has a secure Municipal Xlet running. So user can invoke the Xlet.

Security interfaces

The core functionality includes APIs for sending and receiving secure XML messages. The following functionality is implemented:

· XML encryption module,

· XML digital signature module,

· WS-Trust (STS) module,

· WS-Security module,

· Time Stamp modue,

· Certificate module,

· WebService module.

The core also includes utilities used throughout the code, for example

· XPath processing,

· DOM traversing and creation.

XML Digital Signature Module

XML Signature API provides an interface to XML Digital Signatures. The following tasks may be performed using this API.

· Digitally sign a whole XML document.

· Digitally verify an XML Digital Signature over a whole XML document.

· Digitally sign an element in an XML document.

· Digitally verify an XML Digital Signature over an element in an XML document.

XML Encryption Module

XML Encryption Module provides an interface to XML Encryption. The following tasks may be performed using this API.

· Digitally encrypt a whole XML document,

· Digitally decrypt a whole encrypted XML document,

· Digitally encrypt an element in an XML document,

· Digitally decrypt an encrypted element in an XML document.

WS-Security Module

WS-Security is a simple specification that mainly says how to apply XML Encryption and XML Digital Signature to SOAP messages. It defines a <wsse:Security> element which is placed within the <soap:Header> element and contains security-related information such as authentication, and the use of encryption and digital signatures within the SOAP message.

To create a WS-Security message, the processing model is to

1. create the WS-Security message,

2. create the wsse:Security header(s),

3. create and add sub-elements to the header(s),

4. specify if and how to encrypt/sign,

5. perform encryption and signing, and

6. create a SOAP message.

To process and existing WS-Security message, the processing model is to

1. create a TokenResolver,

2. map the needed keying information in the token resolver,

3. read the SOAP message,

4. make sure the expected headers are present,

5. instruct the Wss processor which (if any) parts of the message must be signed, and

6. process the Security header(s).

WS-Trust (STS) Module

A security token represents a collection of claims about an entity. Typically, this token is used to authenticate the sender or responder in a message transaction. Types of tokens include X.509 certificates and SAML assertions. Parties exchange security tokens via WS-Trust.

The mobile device user sends to STS server the Security Token Request applying the following scenario:

· Obtain credential from the keystore of mobile device the user is logged to.

· Send a WS-Trust request for a Security Token, providing credentials, encrypted using the public key of the STS Server.

· Receive the WS-Trust response containing the Security Token. The Security Token will be encrypted using the public key of the X509 certificate.

Response message carries information in the form of a <saml:Assertion> within the <wsse:Security> element.

Certificate Module

In order to access and parse X509 certificate stored in store of mobile phone it should be used an interface, called ICertificate. Additionally, in order to request and validate a certificate from the PKI infrastructure (that exposes XML Key Management Service, XKMS) it should be used an interface, named IXKMSCall.
Time Stamping module

The Time Stamping handler enables the communication with a trusted third party (Time Stamp Authority, TSA) in order to obtain certified time data that will be cryptographically bound to a document. In cooperation with the XML Digital Signatures moduke, it addresses the need for time-related non repudiation. The Time Stamping handler exposes two interfaces, namely ITimeStamper and ITimeValidator
WebService Module

To build Web Services clients on J2ME devices, we first need a J2ME-compatible SOAP parser. Most standard Java SOAP libraries (such as the Apache Axis and Java Web SDK) are too heavy for small devices. The SOAP parser is built on a generic XML parser with special type-mapping and text data-marshalling mechanisms. The SOAP parser understands the data-type information in SOAP messages and automatically converts the SOAP elements to Java data objects [7].
6. ConclusioN

Web services are a good way to allow smaller devices and applications to use the processing power available on larger machine. Java 2 Micro Edition (J2ME) is a runtime environment for resource-constrained environments. The Java Specification Request 172 (JSR 172) specifies standardized client-side technology to enable J2ME applications to consume remote services. WSA uses the idea of stub classes, so other technology components such as cryptography, XML signature and Java Card technology have to fit into WSA stub classes.
In this work, a possible secure mobile web service scenario is considered. In the scenario we use the idea of stub classes, so other technology components such as cryptography, XML signature and Java Card technology have to fit into WSA stub classes. We considered the scenario where private asymmetric keys and digital certificates stored on the smart card and data can be signed without the private key ever leaving the card.

ACKNOWLEDGEMENT

This work is being carried out in the context of the IST international cooperation project SWEB (044979). This paper is based on the work performed within the context of this project and the authors would like to acknowledge all SWEB partners.

DISCLAIMER

This reseacrh outlined in this paper has been undertaken with the financial assistance of the European Community. The views expressed herein are those of SWB Consortium and can therefore is no way be taken to reflect the official opinion of the European Commision. The information in this document is provided as is and no guarantee or warranty is given to state that the information is fit for any particular purpose. The user therefore uses the information at their sole risk and liability.

LITERATURE

[1] “MIDP 2.0 Security Enhancements“, Otto Kolsi, Teemupekka Virtanen, Proceedings of the 37th Hawaii International Conference on System Sciences, 2004.
[2] IBM Workplace Client Technology Micro Edition Version 5.7.1: Application Development and Case Study, Redbook, June 2005, sg246496.pdf, www.ibm.com/redbooks.
[3] Introduction to J2ME Web Services, C. Enrique Ortiz, April 2004, http://developers.sun.com/techtopics/mobility/apis/articles/wsa/.
[4] MIDP 2.0: SATSA-APDU API Developer’s Guide, version 1.0, February 2nd, 2007. Forum Nokia, Handbook. Mill Valley, CA: University Science, 2007.
[5] Building a secure SOAP client for J2ME, Part 1: Exploring Web Services APIs (WSA) for J2ME“, Bilal Siddiqui, 16 Jun 2006, http://www-128.ibm.com/developerworks/edu/
[6] SWEB Project Homepage, http://www.sweb-project.org
[7] “Understanding the Web Services Subset API for Java ME“, C. Enrique Ortiz, March 2006, http://developers.sun.com/techtopics/mobility/midp/articles/webservices

PAGE
156

