INFOTEH-JAHORINA, Vol. 5, Ref. B-III-3, p. 141-145, March 2006.

DINAMIČKA KONFIGURACIJA GRID RAČUNARA
U OKRUŽENJU VIRTUELNOG RAČUNSKOG CENTRA

DYNAMIC GRID CONFIGURATION IN THE VIRTUAL DATA CENTER

Radomir A. Mihajlovic 1, Sudhakar S. Palande2, Darko V. Mihajlovic3
1CNIS at New York Institute of Technology, New York, USA

2GoldenSource Corp., New York, USA
3Tehnički Fakultet u Boru, Bor, SCG

Sadržaj – U ovom radu je tertian problem optimalnog iskorišćenja procesnih kapaciteta virtuelnog računarskog centra u obliku dinamički konfigurisnog labavo integrisanog grid računara pod praktičnim bezbednosnim i virtualizacionim ograničenjima, koja se ogledaju u mnogobrojnim predvidljivim i nepredvidljivim vrednostima parametara sistema. Određenije, mi predlažemo metod dinamičke knfiguracije i kalibracije grid računara sa ciljem optimizacije izvršenja masivnih računarskih zadataka. Predložen metod je testiran na sistemu grid računara minimalne konfiguracije sa komponentnim serverima velikih procesnih kapaciteta uz korišćenje Interneta kao integracione infrastrukture. Posebna pažnja je posvećena optimizovanoj distribuciji ogromnog skupa mnogo-nitnih računarskih zadataka na asimetrične čvorove grid računara naglašeno različitih performansi.

Ovaj rad prikazuje eksperimentalno dobijene rezultate koji jasno ukazuju na superiornost predloženog metoda u odnosu na ravnomernu distribuciju mnogo-nitnih zadataka, sa najmanje od 20% povećanom brzinom izvršenja masivnih aplikacija. Aplikacioni softver je napisan na jeziku Java sa RMI tehnologijom distribucije pod-zadataka.

Abstract – In this paper we address problems of optimal utilization of the virtual data center processing power in a form of a dynamically configured loosely coupled multiple server grid under practical security and virtualization constraints reflected in numerous predictable and unpredictable system parameter values. Specifically, we propose a method of dynamic grid configuration, grid computing power calibration and optimized job distribution. Using as a test bed, minimal size grid made up of small number of high power enterprise multiprocessor server nodes with public domain Internet as an integration infrastructure, the proposed method has been experimentally evaluated. Special attention has been devoted to optimized distribution of large multithreaded computing jobs among grid nodes of dissimilar computing power.

This paper presents obtained experimental results which clearly favor the presented method as a method that results in minimal grid performance improvement of 20% as compared to static approach of uniform job distribution. The benchmark application has been implemented in Java using Java-RMI as sub-task distribution technology.

1. INTRODUCTION
According to Berkeley University report [1], mankind produced 12 exabytes of data in all history up to 1999, another 12 exabytes from 1999 to 2002, and another 12 exabytes in 2003. An exabyte equals one million million million bytes, or a billion gigabytes. In other words, over the past few years, the amount of information is literally exploding and the need for massive and efficient computing is escalating. When we consider the growing issue of processing demands, it is easy to see why do we have to tap to all underutilized resources available as more efficiently as possible.

In this paper we present two practical methods of optimized distribution of computation intensive load programmed as multi threaded application. The proposed methods belong to the class of High Performance Processing Distribution or HPPD methods. In the sections that follow, the basic rational behind the proposed methods and the practical proof of concept in a form of experimental results with comparative analysis are presented too.
As hardware test bed, we intentionally examine a grid network of dissimilar processing power servers. One of the methods proposed and experimentally evaluated may be classified as static, and the other as dynamic.
2. SOFTWARE TEST BED
Software technology adopted includes: Java SDK 1.4.2, Java class server provided by Sun Microsystems to acting as a light weight http server (used for remote method invocation), Windows 2000 Professional edition for the boss workstation and Solaris 2.6 used as fully debugged operating environment of the worker node servers.

There are numerous software engineering technologies today, used to structure distributed application. The best known are: DCE RPC, Java RMI, CORBA, DCOM, and .NET. Some are used to accommodate operating environment compatibility requirements, some are used for productive programming and some to obtain higher performance. When computing performance is of importance, traditional technologies of DCE RPC and Java RMI have been the technologies of choice, [3,4,5].
Among many programming languages Java has been the only one who has been distributed processing oriented from the very first day of it’s existence, [5]. The main reasons of wide Java acceptance is its support of distributed computing. Java APIs for distributed programming are much easier to use than any other programming technology offered by other programming languages, such as C and C++. The exception is Microsoft corporate standard language C#, which may be considered a Java clone, introduced to bypass the legal framework surrounding Java standard.

[image: image1.png]Communication
Subsystem

Server Code
Remote Object

Return Value A
or Exception

Client Code
Local Object

Stub Call A

Return Value
or Exception

Remote

\/ Method call
Marshaled Result or

Exception

Marshaled
Arguments

Figure 1. RMI Clent/Server interaction.

Figure 1. illustrates basic relationship between the client and the server software modules connected via RMI. By encapsulating the remoteness of distributed software objects, Java's Remote Method Invocation or RMI was designed to make distributed application programming as simple as possible. RMI is a framework that allows objects to invoke methods on remote objects (i.e. objects residing in a different Java Virtual Machine or JVM for short) in the same way as methods of local objects (in the same JVM) are invoked. The syntax of a remote method invocation is similar to a method invocation on a local object, but the semantics for parameter passing are different. For more details consult references [4,5].

The example job used for the laboratory testing of the concepts proposed was an application of finding all prime numbers in the given range of numerical values.

3. HARDWARE TEST BED
Hardware technology adopted was as follows: Wintel PC workstation, and three Sun Microsystems high end multiprocessor servers under Sun’s flavor of UNIX branded as Solaris. To stress one of the main ideas behind this work, all servers were selected to be of different configurations.
	
	Node 1
	Node 2
	Node 3

	Model
	sun4u Sun Fire V1280
	sun4us Fujitsu Ppwer 450 4x Sparc64 V
	sun4us Fujitsu Ppwer 650 8x Sparc64 V

	System clock [MHz]
	150
	220
	270

	Memory [GB]
	24
	4.096
	65.536

	Number of CPUs
	12
	4
	8

	CPU Models
	Ultra

Sparc III
	Sparc64 V
	Sparc64 V

	Core Speed
	1200
	1100
	1889

	L2 Cache Memory [MB]
	8
	5
	3

Table 1.Grid node processing and memory parameters

The parameters of servers used as nodes of the grid interconnected via T1 standard Internet access lines were as follows:

· Machine 1, Sun server sun4u Sun Fire V1280,

· Machine 2, Sun server sun4us Fujitsu

 Primepower 450 4x SPARC64 V, and

· Machine 3, Sun server sun4us Fujitsu

 Primepower 650 8x SPARC64 V.

Detailed parameters of the grid nodes are presented in Table 1.

The test applications were all engineered as shown in Figure 2. The boss component was installed on the Wintel workstation and the worker modules were located on grid node servers, one on each of the servers, respectively.
[image: image2.png]_—
Worker 3
_—

Figure 2. Experimental distributed application architecture

Each worker has been assigned different range of the numerical values to process and produce a prime number sequence.

4. STATIC LOAD BALANCING

The experimental run of the test application with equal load distribution points to the fact that the total elapsed execution time of the entire computing job depends upon the slowest node machine, (See Figure 3). With proper load balancing it was reasonable to expect that certain performance gains can be achieved. With an exception of the trivial case without any load balancing, two load balancing methods have been proposed and practical techniques were implemented which are described below in respective sections.

In this section we present static method of optimizing load distribution using the total grid node processing capacity expressed as integrated CPU clock speed. This method neglects the internal multiprocessor interconnection system clock speed shown in Table 1. For more details on the relationship between the CPU and the systems clock speeds see [2]. This load balancing technique takes into consideration the machine configuration, i.e., the number of CPUs and the CPU speed. Based on these values initial job partition allocation is applied all jobs regardless of the current load of individual node servers or network interconnection infrastructure. In our lab example the individual load balancing parameters of the node servers of Table 1 are obtained and shown in Table 2.
The method of load balancing based on data form Table 2 simply states the following: “Node machine Pi with xi number of CPUs gets Ci fraction of the total number of the overall job threads, where i=1,2,…,N, and N represents the total number of nodes in the computing grid of servers” An alternative method would divide the overall job proportionally to the balancing coefficients and than have each server’s portion distribute between fixed number of threads on each of the nodes. In this arrangement, all threads of a given server are assumed to have equal cut of work.
	
	Number of CPUs
	CPU Speed [MHz]
	Total Power [MHz]
	Balancing Coefficient

	Node 1
	4
	1100
	4400
	0.13

	Node 2
	12
	1200
	14400
	0.42

	Node 3
	8
	1889
	15112
	0.45

	Total
	
	
	33912
	1.00

Table 2. Balancing coefficients based on CPU number and speeds.

Alternative method has been evaluated on our benchmark type of application where the range of numbers from 1 to 107 has been divided according to the presented scheme. Using balancing coefficients from Table 2 the entire range has been partitioned as follows:
 L = L1 + L2 + L3
 = L (C1 + C2 + C3)

 = 107 (0.13+0.42+0.45)

(1)

Where the individual load values were L1= 13 105 , L2 = 42 105, and L3= 45 105.

The following execution times have been obtained: T1= 30sec, T2=60sec and T3=40sec.

In this scenario we see that the total job execution time is 60 seconds which is the time taken by the machine with the slowest response (Node 2) where nodes 1 and 3 returned with the finished job earlier with timings of 30 and 40 sec respectively.

5. DYNAMIC LOAD BALANCING
Based on the periodic calibration test one may optimally distribute threads to Node Processors Pi’s) regardless of their hardware configuration and momentary load.

Given total number of application test threads nT and number of node processors N in the grid, the number of threads to be optimally allocated to each node Pi is ni determined by the following expression:

[image: image3.wmf][

]

å

=

×

=

N

j

i

i

T

i

i

T

T

N

n

P

threads

n

1

2

1

/

 i=1,2, …, N (2)

Where Ti represents calibration time needed for each node to complete the allocated uniform test work load.

The calibration test consists of:

· a uniformly distributed burst of threads to all computing nodes of a grid, and

· timing of execution of each of the bursts.

Consider a test job made up, in total, of nT threads. Our experiment is based on the test job of nT = 96 threads uniformly distributed among N=3 node processors, where each processor’s load is given as:
ni = nT / N = 96/3 =32 i=1,2, …, N
(3)
Calibration of the grid with regard to the selection of the optimal number of threads is not covered here, [2]. Using such test permits each node to have variable number of CPUs, different system and processor clock speeds, different amounts of cache and arbitrary operating memory capacities.

Each node processor Pi executes its test nT / N load of threads in calibration response time period of Ti seconds. Approximate measured time of execution of a single thread on each node is:
 ti = Ti / (nT / N) , i = 1,2, . . . N (4)

 The average execution time per node is given by:

[image: image4.wmf]å

=

=

N

j

i

T

N

T

1

1

 (5)
Under optimal thread load distribution all nodes complete the allocated portion of the work load at the same time and the total application does not end with the slowest node completing it’s job, as in the uniform job distribution, but rather at the time equal to the average calibration time T. In order to accomplish such almost simultaneous job completion each individual node must have the load allocation inversely proportional to the calibration response time Ti, (or to the unit thread execution time ti), where i=1,2, …,N. If we measure load in the number of threads assigned, after combining expressions (4) and (5), each processing node Pi should have the following number of threads to execute:

[image: image5.wmf]å

=

×

=

=

N

j

i

i

T

i

i

T

T

N

n

t

T

n

1

2

1

i=1,2, …, N
 (6)

The percentage load distribution coefficients pi may be calculated as:

 pi = 100 ni / nT
 i=1,2, …, N
 (7)

This method of dynamic job allocation distributes given job load to each node of a grid proportionally to it’s momentary processing power which includes CPU speed, number of CPUs, memory size and the current side load. Since all of the mentioned processor power parameters are very hard to exactly quantify individually as well as in integrated form, common representative in a form of a pi coefficient appears as justified and practically useful.

Method of dynamic load distribution based on expression (2) and (6) has been practically tested and favorable results have been obtained.
6. EXPERIMENTAL RESULTS

The range of numbers in our test application, has been used as a measure of the total load. The prime number example job has been selected intentionally with two reasons in mind:
1) The job could be sub divided easily into smaller partitions, by simply dividing the range into smaller sub ranges, and
2) Finding prime numbers is a CPU bound job that could simply place a measurable load on processors.
[image: image6.png]T [sec]

1000

900

800

700

600

500

400

300

200

100

100 200 300 400

%0 log(L) [M]
Node 1--0-- Node 2 ..A. Node 3 =O-

Figure 3. Response time with individual assignment of equal share of 8-threaded portion of total load in millions units.
[image: image7.png]T [sec]

700

600

500

400

300

200

100

100 200 300 400 500 log(L) [M]

Node 1--0- Node 2 ..A.. Node 3 =O=

Figure 4. Response time with optimized individual assignment of equal share of 8-threaded portion of total load in millions of units
During the calibration load has been equally distributed . After the first test run the response time statistics were collected and analyzed . Figure 3 shows wide variation in completion time values Ti between each of the node servers. From the load balancing analysis, dynamic thread allocation coefficients were obtained and the second actual job load run were performed. Using dynamic method of load distribution, i.e., the obtained balancing coefficient values, 6, 4 and 10 threads of equal amount of work were assigned to nodes P1, P2, and P3, respectively.

Figure 4 illustrate narrow spacing between the individual job partition time completion values Ti, indicating balanced utilization of all computing resources of the grid. In addition performance improvement of more than 20% has been observed.
The scope of this paper does not permit further elaboration on technical issues encountered during the evaluation of here proposed load balancing and arbitrary grid performance optimization.
Figure 5 shows the screen shot of the worker node execution status obtained through the secure VPN connection.

7. TECHNICAL DIFFICULTIES

Getting each node machine configuration parameters when using static optimization method based on the server total processing capacity requires the CPU configuration of each of the servers. Java standard method System.getProperties() does not provide the required information. Therefore, another java method Runtime.getRuntime() was used which allowed running an OS command with specific environment settings. Using the output of the OS command does not explicitly give the required information, (Number of CPUs and CPU speed). The command output was formatted as a table which needed to be parsed in order to extract the required information. Rarely used Solaris command ‘psrinfo’ has been used to get the required optimization parameters.

In addition, running distributed applications over VPN connection on Internet has created initially some problems. Frequent exception encountered was “Unknown server exception” or “Cannot Marshall/Unmarshall” error. It took great deal of effort to discover the cause of these errors. It turned out that when we would connect to a network over the VPN connection, grid node servers would get the new dynamic IP address. Host names and/or the old IP addresses would not be possible to locate than. For solutions to these problems we encourage reader to contact any of the authors.
[image: image8.png]2sperf2; /export /hone/spalande/csc1B80/Project Iexport CLASSPATH=/export shone/spal
K1.4.2_07/Lib: /expart /hane/spalande/cseiB80 /Praject LL /pubLic/cLasses /depLou/server.
9sperf2: /export /hone/spalande/csci880/Project IEexport. CLASSPATH=/export /hone/spal
K1.4.2_07/Lib: /expart /hane/spalande/cseLB80 /Praject L /pubLic/cLasses/depLay/server.

9sperf2: /export/hone/spalande/csci880/Project I java —Djava,ri server codebasesht
or hostnane=gsperf2, Ftisoftus con —Ijava,security poLicy=/export Jhone/spal ande/csc:
4 engine ConputeEngine gsperfa

ConpteEngine bound

No of Processars = 8 with 1889 Mz each

Total Tine elapsed in MiliSeconds = 1889

Start no —->7500001 end no 15000000

Start no ——>1 end no 7500000,

Start no ——522500001 end no 30000000

Start no —->15000001 end no 22500000

niliseconds to generate prine nunbers betueen 1 and 7500000 = 16874

508260 runber of prines

niliseconds to generate prine nunbers betueen 7500001 and 15000000 = 28408

462443 runber of prines

niliseconds to generate prine nunbers betueen 15000001 and 22500000 = 35666
447936 runber of prines

niliseconds to generate prine nunbers betusen 22500001 and 30000000 = 41122
439219 runber of prines

Figure 5. Worker node job execution status report
8. CONCLUSION

Based on the presented experimental laboratory test results we can conclude that in order to attain high computing throughput, the distribution of computing jobs of massive multithreading nature may be dynamically accomplished along the nodes of the computing grid with here proposed methods referred to as High Performance Processing Distribution or HPPD methods. Particular job implementation technology selected as the most reasonable brand independent choice is using grid computing enabled by Remote Method Invocation or RMI software integration technology backed by the proposed HPPD methods of static or dynamic load balancing.

By applying the proposed dynamic HPPD method it is possible to attain near optimal load balancing in the highly unpredictable practical distributed computing environment integrated via public domain Internet communication infrastructure characterized also by fairly unpredictable communication throughput and relatively high transmission delays.
Results presented in this paper show that whenever CPU intensive job has to be completed within, as short as possible time frame, method such as dynamic HPPD will guarantee near optimal performance.
By taking into account current level of each node load as well as by taking into account the current load level of interconnecting network infrastructure, dynamic HPPD approach helps equalize utilization of all engaged elements of the computing grid.
REFERENCES
[1] Andrew Lawrence “Paperless office postponed”, 10 June 2003, Infoconomy 2003, http://www.infoconomy.com/pages/archives/group80265.adp

[2] Radomir A. Mihajlovic, “Operating Systems Theory and Technology,” NYIT Press 2005.

[3] Gregory R Andrews, “Foundations of multithreaded, parallel, and distributed programming”, Addison-Wesley, Reading, Mass. 2000.

[4] “Dynamic code downloading using RMI”, White paper Sun Microsystems, 1999 java.sun.com/j2se/1.3/docs/guide/rmi/codebase.html

[5] Doug Lea, “Concurrent Programming in Java”, Addison-Wesley, Second Edition, 1999.

141

_1199277141.unknown

_1199277448.unknown

_1199276756.unknown

