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POSTDETEKCIONI DIVERZITI U KANALIMA SA KORELISANIM GRANAMA U PRISUSTVU NAKAGAMI FEDINGA

POST-DETECTION DIVERSITY IN NAKAGAMI FADING CHANNELS WITH CORRELATED BRANCHES 

Goran Tomović, Bojan Stanković, Elektronski fakultet, Niš

Sadržaj: Mi smo izveli zatvorenu formu izraza za performanse postdetekcionog usklađivača (PDC)

koji radi u Nakagami fedingu sa L korelisanih grana. Mi razmatramo šemu 2-DPSK signalizacije i neselektivni spori feding. Srednja verovatnoća greške (BER) dobijena sa ovom šemom je upoređena sa idealnom prethodnom detekciom MRC, pokazujući ograničene gubitke. Štaviše, postdetekcioni usklađivač PDC je pokazao da obavlja selekciono diverziti usklađivanje (SDC) u razmatranom slučaju Nakagami fedinga.

                     Abstrakt: We derive a closed form expression for the performance of the post-detection product de-

                      tector combiner (PDC) operating on L correlated branches in Nakagami fading. We consider the

 2-DPSK signaling scheme and nonselective slow fading. The average bit error rate (BER) obtained

with this scheme is compared to the ideal predetection MRC, showing limited loss. Moreover, the

 post-detection PDC is shown to outperform the selection diversity combiner (SDC) under the con-

sidered case of Nakagami fading.

Ključne reči: Verovatnoća greške, diferencijalni fazni pomeraj, diverziti prijem, kanali neselektiv-

nog fedinga.

Index Terms: Bit error probability, differential phase-shift keying, diversity reception, nonselective

fading channels.

                             1.INTRODUCTION

   In mobile communicationsthe received  signal amplitude  can be affected by fade phenomena due to multipath propagation; a general model for the fading was proposed by Nakagagami 
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, under the name of m-distribution. Performance improvement can be achieved by using an L branch diversity receiver, though, in some practical mobile systems, branch correlation reduces diversity gain and must be accounted for in the system desing. For independent branches, the predetection MRC is the optimum  scheme and is frequently considered since its performance gives an upper bound for suboptimal combiners. In 
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 we presented the BER of binary signaling on Nakagami channels with predetection MRC and correlated branches. In practise, the coherent detection is difficult to implement on faded chennels and signaling

 while in
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 it is named post-detection equal gain  (EG) combiner and in 
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 post-detection MRC. In this letter , we analyze the performance of 2-DPSK signals on m-distributed fading channels using an branch post-detection PDC with generic branch correlation.

                     2.SYSTEM MODEL

      The received signal  is corrupted by an AWGN which is   assumed statisticallyindependent on each branch. In the   complex baseband model, the received signal at the ith bit interval at the input of the kth branch is:

schemes are preferred, which operate with differential modulation and detection. Moreover, predetection MRC has high implementation complexity, therefore, it is of  interest to analyze the performance of  simpler diversity  schemes. We consider the product detector 
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-

. A differential product is evaluated at each branch and the decision variable is the unweighted sum of the outputs 

of the L differential products. This combiner will be referred to as post-detection product detector combiner
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 where 
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 represents the lth transmitted signal. For binary PSK, 
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, being g(t) an unit energy pulse. 
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 is AWGN with one sided power spectral density 
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 is the fading  phase shift, and 
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 is the fading amplitude which follows the Nakagami-mpdf 
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where 
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 is the Gamma function, 
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 the fading severity.

     We consider nonselective and slow fading so that 
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 and 
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 remain constant over at least two consecutive bit intervals. After matched filtering the signal on each branch, the post-detection PDC takes the unweighted sum of the L differential detectors outputs, and its decision variable, which is tested for being positive or negative is:
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where 
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and 
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are the AWGN components at the output of the matched filters in two consecutive bit intervals.

    The instantaneous SNR per bit 
[image: image28.wmf]g

, at the output of the combiner, is equal to the sum of the signal-to-noise ratios (SNR's) 
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, where 
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 is the SNR at the input of the detector in the kth branch:
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Moreover, the input instantaneous SNR, 
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where the input average SNR for the kth branch, 
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, is expressed by 
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     In the case of space diversity, if the antennas are closely spaced, with respect to the carrier wavelength, the fading at the branch inputs are not independent. The branch correlation is encoded by the matrix 
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, whose elements 
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3.EVALUATION OF THE ERROR PROBABILITY

    The conditional error probability 
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 (6)    

where the coefficients 
[image: image44.wmf]k

c

 are given by:
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As fading is independent of noise, the BER, 
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, is evaluated by averaging (6) over the p.d.f. of the fading variable 
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By definig the moment generating function (MGF) 
[image: image49.wmf])
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and substituting (6) into (8), the BER can be rewritten as a function of the derivatives of the MGF
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The MGF of 
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, given by (4), can be expressed as 
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where 
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To evaluate the derivatives in (10) we note that:
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where, with some tedious but simple algebra, it results
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being:
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Finally, substituting (12)-(15) into (10), and noting that for predetection MRC and 2-DPSK signals the BER is 
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we obtain
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with the coefficients 
[image: image72.wmf])).

1

(

)

(

(

)

(

)

(

+

G

G

+

G

=

h

l

h

l

h

H

l


     Alternatively, (17) can be written as
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where the polynomials 
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and they can be recursively evaluated starting from
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     In the simple case of Rayleigh fading (m=1) and balanced independent branches (
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Then, the BER, given by (18), becomes
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     Noting that 
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, (18) can be rewritten as:
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Since the sum in this last equation is positive, post-detection PDC performs worse than predetection MRC. When 
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On the contrary, for high SNR 
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 for L=3. Hence, the higher is the fading severity, the smaller is the loss of post-detection PDC with respect to predetection MRC.

                   4.CONCLUDING REMERKS

     This letter provides a closed form expression for the performance of L branch post-detection PDC diversity in correlated Nakagami fading and AWGN, for 2-DPSK signaling. The BER has been derived in terms of polynomials which can be recursively evaluated; it does not suffer any limitation about the branch correlation model and diversity order. The PDC diversity has a simpler structure than the MRC and is easier to implement. We provided performance comparison between post-detection PDC and predetection MRC. We show that the post-detection PDC performs only 1-3 dB worse than the predetection MRC, depending on m, L, and branch separation d. Furthermore, separation between two adjacent antennas greater then 
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  is enough to obtain most of the diversity gain. For L=2 also a comparison with SDC has been presented, which shows that post-detection PDC outperforms SDC.
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