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Abstract—In this paper, frequency domain implementation of the 
two-stage decimator is presented. The whole filtering and 
decimation process is realized in frequency domain in 
combination with well-known fast convolution methods: Overlap-
Add and Overlap-Save. The two-stage implementation makes the 
algorithm suitable for large decimation rates. The proposed 
algorithm utilizes block processing and it is compared with its 
one-stage equivalent and direct implementation of finite impulse 
response (FIR) decimator in terms of time performance. The 
results show that this algorithm outperforms both of these 
decimators.  
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I.  INTRODUCTION 
The one of the most important goals in design of 

telecommunication devices is to perform signal processing as 
much as possible in digital domain. As a result, in the case of 
the receiver, the analog to digital conversion point is moved 
closer to the analog front end, i.e. digitalization of the signal is 
performed at relatively high frequencies. A high rate decimator 
is a necessary part of digital signal processing chain in that 
case. In this paper, the efficient realization of the two-stage 
decimator suitable for real time applications is presented. Both 
stages of decimator are realized in the frequency domain. 
Filtering is realized by means of fast convolution and 
downsampling is realized by rearranging of the spectrum of the 
filtered signal. 

The idea for fast convolution algorithms lies in the 
convolution theorem: multiplication in the frequency domain is 
equivalent to convolution in the time domain. In digital signal 
processing, frequency domain representation of the signal is 
usually obtained by DFT (Discrete Fourier Transform). Inverse 
DFT of the product of two DFT sequences actually is a circular 
convolution of the corresponding signals in the time domain. 
However, in [1] and [2] was shown that linear convolution can 
be obtained based on the calculation of the circular convolution 
by DFT. Many research papers explored these DFT algorithms 
and showed that their results were better regarding efficiency 
than using direct convolution with tapped-delay line finite 
impulse response (FIR) filters. In order to achieve significant 
improvement in time efficiency, the processing signal is 
usually divided into blocks and the DFT of each block is 

calculated [1]. This ensures speeding up the process, but 
introduces additional delay. This is due to the fact that it is 
necessary to collect the number of samples equal to the block 
length to start processing. Overlap-Add and Overlap-Save are 
two most common methods for utilizing fast convolution and 
they can be combined with sample rate conversion techniques 
according to the work presented in several papers [2], [3]. Also, 
it is better to use multistage filtering when large decimation 
factors are involved [4]. The goal of this paper is to present the 
algorithm which combines the mentioned methods and 
implements two-stage frequency domain decimator. 
Development of the decimator, signal processing and testing is 
implemented in C++ programming language. Kiss FFT (Fast 
Fourier Transform) is used for the calculation of the Fourier 
transform [5]. It is a C based library, which uses fixed and 
floating point data types and it gave satisfactory results during 
testing. 

After the introductory part, a brief overview of the fast 
convolution algorithms will be given. In Section III, the 
proposed algorithm is described in detail. Section IV features 
the experimental settings and obtained results. The concluding 
remarks are given in the last section. 

II. FREQUENCY DOMAIN SIGNAL PROCESSING 

A. Fast Convolution Methods 
Fast convolution algorithms become very useful when the 

filter (h(n)) length is greater than 40 to 80 which depends on 
the hardware and software being used [6]. The reason for this 
lies in the fact that the process requires fewer computations 
than directly implemented convolution. The larger the lengths 
of the input signal and filter impulse response are, these 
advantages become more significant. 

Fast convolution gives us output signal with length NCONV. 
If the length of the input signal (x(n)) is N, and the number of 
filter coefficients is M, then the NCONV = N + M – 1. In order to 
achieve this, we have to choose DFT size such that NDFT ≥ 
NCONV and then zero-pad h(n) and x(n) so that they have new 
lengths equal to NCONV. 

If the x(n) input sequence becomes very large (i.e. 
endless), circular convolution cannot be performed, and some 
additional methods are used. The input sequence is partitioned 
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into smaller blocks of samples and each block is processed 
individually. Overlap-Add method computes a continuous 
convolution from smaller convolutions in a buffer-by-buffer 
manner. Another technique used in this case is Overlap-Save 
which breaks the rules for linear circular convolution 
equivalence, i.e. it uses circular convolution without zero-
padding [2]. 

The Overlap-Add method consists of the following steps 
[7]: 

• decomposition of the signal into simple components, 

• adequate processing (filtering) of each component, 

• recombination of the processed components into the 
final signal. 

The idea is to divide the processing signal x(n) into blocks 
and convolve each block with the filter coefficients. If the 
length of the each sequence is N, and the filter length is M, 
then the length of the resulting signal of each processed block 
is N+M–1. The extra M–1 samples are added to the first M–1 
samples of the next block. This procedure is repeated until all 
samples of the input signal are filtered. 

The Overlap-Save method uses a slightly different 
approach. The idea is to save the part of the first input block 
that contributes to the second output block and use it in that 
calculation (input signal is overlapped). After the calculation, 
overlapped parts of the output are discarded. 

B. Frequency Domain Decimation 
Downsampling by factor D can be implemented in the 

frequency domain by adding the frequency components to be 
aliased. The speed advantage that comes with the smaller 
inverse DFT becomes more pronounced at higher decimation 
rates. The important condition is that the number of frequency 
bins must be a multiple of the decimation rate. Downsampling 
as a part of fast convolution has the following conditions [3]: 

1. The filter order must be a multiple of decimation rate:  

M – 1 = K1D                                         (1) 

2. The DFT length must be a multiple of decimation rate: 

N + M – 1 = K2D.                                      (2) 

In (1) and (2), K1 and K2 are integer values. 

III. TWO-STAGE FREQUENCY DOMAIN DECIMATOR 
The algorithm is a mixture of different ideas presented in 

the papers that consider signal processing in the frequency 
domain. The advantage of this method is that the entire 
processing for each stage is realized in the frequency domain 
(filtering and decimation). As already mentioned, this 
advantage becomes more significant as the order of the filter 
increases. When the number of filter coefficients exceeds 
certain number, this algorithm becomes more efficient than the 
direct implementation in time domain. The algorithm is 
illustrated in Fig. 1. Since the algorithm utilizes block 

processing, the predefined number of samples needs to pass 
through the system before the processing can begin.   

Signal is processed in blocks of N samples, and each block 
is filtered in two stages. The filtering process is carried out in 
two stages when the decimation factor is large (D>20). In that 
case, the decimation factor in the first stage is chosen using [4]:                
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The first stage decimation factor is the closest integer value to 
(3), which is also a divisor of the total decimation factor. The 
second stage decimation factor can be obtained by simply 
dividing the total decimation factor with the first stage value. 
This equation gives the optimal values for decimation factors 
in terms of computational savings.  

Parameters of the implemented algorithm for each stage 
are: 

• N –  the number of signal samples in one block for 
processing; 

• M – filter length; 

• D – decimation factor; 

• NDFT – DFT size. 

All the parameters were evaluated in accordance with the rules 
for decimation when using fast convolution, given with (1) and 
(2), applied for each stage separately. Also, in order to make 
the DFT more efficient, FFT (Fast Fourier Transform) 
algorithm can be used. In that case the length of the transform 
(NFFT) can be chosen to be power of two (2n, where n is an 
integer). This leads to conclusion that, in that case, the filter 
order also needs to be 2n.  

The first stage (using Overlap-Add method) consists of the 
following steps: 

1. Zero-pad the filter h(n) with N-1 zeros to make it 
length (N+M–1). 

2. Calculate the FFT (length N+M–1) of the filter 
obtained in the previous step. 

3. Analogously, each signal block needs to be zero-
padded with M–1 zeros in order to make it length 
N+M–1. 

4. Calculate the FFT (length N+M–1) of the signal block 
obtained in the previous step. 

5. The FFTs of the filter and the signal block are then 
multiplied, and the resulting signal is NFFT long. 
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6. Coherently add the frequency components to be 

aliased. FFT decimation procedure is shown in Fig. 
2. Basically, the signal obtained in step 5 needs to be 
divided into D equal intervals. Then each element of 
the first segment is summed with the corresponding 
elements in the other ones. The corresponding 
elements are illustrated with the same colors in Fig. 
2. The resulting signal is NFFT ⁄D long. 

7. Compute the inverse FFT and scale it with factor D. 
Note that it is important to provide that this fraction 
(N⁄D) is integer. 

8. The last (M–1)/D samples obtained in step 7 are 
added to the first (M–1)/D samples of the next block 
processed. 

In the first stage, signal sample rate was decreased D1 
times, so N input samples gave N⁄D1 output samples after 
applying the first filter. This fraction N⁄D1 must be equal to 
n×D2, where n is an integer (n = 1, 2, …) and D2 is second 
stage decimation factor. In second stage, all steps from 1-8 
are repeated, but with different filter impulse response and 
decimation factor. The whole process is repeated until all 
samples of the input signal are filtered. In practical 
realization, filter impulse response for both stages is pre-
calculated so that there is no additional time consumed on 
this computation (steps 1-2) when processing each block of 
samples. 

The algorithm with Overlap-Save method uses similar 
concept as the one with Overlap-Add, with the difference 
that the last (M–1)/D samples from the previous block 
(previously saved) are used as the first (M–1)/D samples of 
the current block (this creates an overlap). When filtering is 
applied, then these first (M–1)/D samples are discarded. 

IV. EXPERIMENTAL RESULTS 
The presented algorithm is evaluated by comparing it 

with the time domain two-stage decimator and frequency 

domain one-stage decimator. Analysis is based on the 
measurement of two parameters: delay and processing time. 

Several filters were designed using MATLAB software 
package with minimum filter order and the appropriate 
passband and stopband attenuation. The filters were zero-
padded in case they did not satisfy (1). 

In real-time application, block processing is applied. For 
the purpose of this testing, duration of each test signal is 
chosen to be fixed. This value assures that the whole signal 
can be equally divided into n blocks (where n is an integer 
value). In that way, all samples are processed for every set of 
fast convolution parameters that was examined.  

A. Hardware Configuration 
Table I gives specification of the used hardware. Tests 

were performed on Ubuntu 14.04.2 operating system which 
provided accurate time measurements. 

B. Fast Convolution Method vs. Direct FIR 
Implementation (One Stage) 
As stated before, fast convolution algorithm becomes 

efficient when the length of the filter exceeds certain value. 
Since this value is greatly influenced by hardware, the first 
step is to determine when the usage of the fast convolution 
algorithm becomes justified. 

The designed filter coefficients were used to process test 
signal while utilizing two approaches: fast convolution 
algorithm and direct FIR implementation. The number of 
coefficients used in this analysis varied from 38 to 84. It was 
observed that in this case fast convolution algorithm 
outperforms direct FIR decimator when filter length exceeds 
45, for the optimal set of fast convolution parameters, which 
includes trade-off between time efficiency and the initial 
delay. In addition, when the filter length is greater than 80, 
fast convolution is more efficient even for the smallest 
possible delay. The trade-off between time efficiency and 
system delay will be further explained in the next section for 
the two-stage implementation. 

TABLE I.  HARDWARE SPECIFICATION 

Hardware Specification 
RAM 8 GB 
CPU Model Intel(R) Core(TM) i5-4690 CPU @ 3.50GHz 
Number of CPU Cores 4 
Magnetic Hard Disk Drive Seagate Barracuda 1TB, 3.5"  
Operating System Ubuntu 14.04.2 LTS Desktop 64-bit 

Figure 2: Frequency domain decimation 

Figure 1: Two-stage frequency domain decimator 
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C. Analysis of the Two-Stage Frequency Domain 
Decimator 
In cases where decimation factor is high, it is better to 

use multistage decimators. The proposed algorithm is tested 
in case of two stages in accordance to (3). The advantage of 
the algorithm is that during single stage complete processing 
(filtering plus decimation) is done in frequency domain, 
which reduces processing interval. The processing is carried 
out in blocks, which size depends on the FFT length. With 
the increase in block size, the processing time decreases. 
Unfortunately, as the block size increases, so does the delay 
in the system, if it is used in real-time applications. Larger 
FFT length means that more samples are needed for the 
calculation. In two-stage approach, FFT length of the second 
stage affects the delay more than the one in the first stage. 
For large FFT size, the delay can become unacceptable if the 
algorithm is used for real-time applications. Specification of 
the filters used in this analysis is shown in Table II (sampling 
frequency – fs, passband frequency – fpass, stopband 
frequency – fstop, passband attenuation – Apass, stopband 
attenuation – Astop, filter length – M). 

Table III illustrates the previous statements (FCII - 
Frequency Domain Two-Stage Decimator, FCI - Frequency 
Domain One-Stage Decimator, FIRII - Time Domain Two-
Stage Decimator). It was filled with results for the signal 
with initial sampling frequency of 256 kHz. First stage filter 
consists of 94 coefficients, while the second stage filter has 
110 coefficients (table II). Both filters were zero-padded to 
the length of 128. The total decimation factor is 32 (D1 = 16, 
D2 = 2), i.e. the resulting sampling frequency is 8 kHz. Time 
efficiency measurement refers to the processing interval per 
one second of the signal, and it is given in milliseconds. The 
initial delay refers to the delay in the fast convolution 
algorithm. For example, in case where N1 = N2 = 128, the 
algorithm needs 2048 samples in order to start processing. 
After this first block is processed, 64 output samples will be 
produced. 

It can be clearly seen that time efficiency of two-stage 
frequency domain decimator increases to certain extent when 
using larger blocks of samples. On the other hand, the delay 
increases as well, especially with the increase of the block 
size in second stage. The best result regarding time 
efficiency was obtained for N1 = N2 = 896, but because of 
the delay, it is suitable for offline processing. Since this 
solution is impractical for real-time applications, in that case 
the best choice would be to use blocks of N1 = 896 and N2 = 
128.  

TABLE II.  FILTERS SPECIFICATION 

 fs 
[kHz] 

fpass 
[Hz] 

fstop 
[Hz] 

Apass 
[dB] 

Astop 
[dB] M 

I Stage 256 3400 12600 0.1 80 94 
II Stage 16 3400 4000 0.01 80 110 

One-Stage 
Equivalent 256 3400 4000 0.11 80 1406 

I Stage 216 3400 20600 0.1 85 44 
II Stage 24 3400 4000 0.1 80 115 

One-Stage 
Equivalent 216 3400 4000 0.2 80 1114 

TABLE III.  DECIMATORS – TIME EFFICIENCY COMPARISON (FFT) 

 I Stage II Stage Initial 
Delay 
[ms] 

Time Measurement [ms] 

NFFT1 N1 NFFT2 N2 FCIIa FCIb Direct  
FIRIIc 

256 128 

256 128 

8 33.84 

34.85 
(NFFT = 4096 

N = 2048 
Delay = 8 ms) 

 

24.57 
(NFFT = 8192 

N = 6144 
Delay = 24 ms) 

 

51.8 

512 384 9 25 
1024 896 10.5 21.45 
2048 1920 15 22.02 
256 128 

512 384 

24 33.17 
512 384 24 23.85 

1024 896 24.5 20.46 
2048 1920 30 21.27 
256 128 

1024 896 

56 33.02 
512 384 57 23.7 

1024 896 56 19.95 
2048 1920 60 20.88 

a. Frequency Domain Two-Stage Decimator 

b. Frequency Domain One-Stage Decimator       

c. Time Domain Two-Stage Decimator 

It can also be observed that the increase of the second 
stage signal length greatly increases the delay, which is 
consistent with the previous claims. The optimal fast 
convolution parameters can be determined for different 
filters and decimation rates by performing this type of 
analysis. 

Table III also gives time measurements for one-stage 
frequency domain decimator (with the equivalent filter from 
table II) and time domain two-stage decimator (which uses 
the same filters as FCII). The usage of time domain one-
stage decimator was not taken into consideration, since it 
would be highly impractical. The results justify the usage of 
the proposed algorithm. 

The analysis can also be performed when the size of 
Fourier transform is not 2n (table IV). In this case, there are 
more possible values, which can satisfy (1) and (2), which 
can reduce the delay in the system. The problem actually 
comes down to the DFT efficiency. The parameters must be 
chosen in a manner which would avoid dealing with the 
known problems in this field (like calculating inverse Fourier 
Transform with the size which is a prime number, etc.). As 
an example, test signal with the initial sampling frequency of 
216 kHz and total decimation factor of 27 (D1 = 9, D2 = 3) 
was used. The designed filter for the first stage had 44, and 
for the second stage 115 coefficients (table II). The second 
filter is zero-padded to the 117.  

TABLE IV.  DECIMATORS – TIME EFFICIENCY COMPARISON (DFT) 

I Stage II Stage Initial 
Delay 
[ms] 

Time Measurement [ms] 

NDFT1 N1 NDFT2 N2 FCIIa FCIb Direct  
FIRIIc 

90 45 

234 117 

5 33.96 38.43 
(NDFT = 2268 

N = 1134 
Delay = 5.25 ms) 

 
26.03 

(NDFT = 4536 
N = 1134 

Delay = 15 ms) 

25.85 

180 135 5 25.55 
225 180 5 22.51 
270 225 5.21 22.40 
360 315 5.83 22.68 
720 675 6.25 21.62 

a. Frequency Domain Two-Stage Decimator 

b. Frequency Domain One-Stage Decimator       

c. Time Domain Two-Stage Decimator 
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The results are consistent with the previous analysis. The 
difference is that decreased DFT efficiency and filter length 
reduce the advantage of the frequency domain decimators. 

V. CONCLUSION 
The purpose of this paper is to present an efficient 

algorithm for combining filtering and decimation of the 
signal in the frequency domain for large decimation rates. It 
uses fast convolution methods and it is realized in two stages 
in order to improve time performance of the signal 
processing. The algorithm implements either Overlap-Add or 
Overlap-Save method and can be used for real-time 
applications. Development of the system, including signal 
processing and testing of the various signals and filters, was 
implemented in C++ programming language. 

As expected, the first part of the analysis showed that the 
fast convolution algorithm outperforms direct FIR 
implementation when the number of filter coefficients 
exceeds 45 with the usage of optimal parameters. One-stage 
implementation becomes impractical for time domain 
decimator and less efficient for frequency domain decimator 
in case of large decimation factors. Therefore, the proposed 
algorithm utilizes the advantages of two-stage processing 
which leads to further improvement in time efficiency at the 
expense of the initial delay. The second part of the analysis 
addresses to this trade-off. 

Time efficiency of the proposed algorithm can be further 
improved with the improvement of the FFT efficiency. 
Depending on the usage, the filters can be chosen in a 
manner which would minimize the initial delay. 
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