
INFOTEH-JAHORINA Vol. 15, March 2016.

 - 353 -

Implementation and Analysis of Two-Stage
Frequency Domain Decimator

Ina Masnikosa, Stefan Stojkov
School of electrical engineering, University of Belgrade

Mihajlo Pupin Institute, University of Belgrade
Belgrade, Serbia

ina.masnikosa@pupin.rs, stefan.stojkov@pupin.rs

Jelena Certic
School of electrical engineering, University of Belgrade

Belgrade, Serbia
certic@etf.rs

Abstract—In this paper, frequency domain implementation of the
two-stage decimator is presented. The whole filtering and
decimation process is realized in frequency domain in
combination with well-known fast convolution methods: Overlap-
Add and Overlap-Save. The two-stage implementation makes the
algorithm suitable for large decimation rates. The proposed
algorithm utilizes block processing and it is compared with its
one-stage equivalent and direct implementation of finite impulse
response (FIR) decimator in terms of time performance. The
results show that this algorithm outperforms both of these
decimators.

Keywords-fast convolution; decimation; two-stage; filtering;
frequency domain; block processing

I. INTRODUCTION
The one of the most important goals in design of

telecommunication devices is to perform signal processing as
much as possible in digital domain. As a result, in the case of
the receiver, the analog to digital conversion point is moved
closer to the analog front end, i.e. digitalization of the signal is
performed at relatively high frequencies. A high rate decimator
is a necessary part of digital signal processing chain in that
case. In this paper, the efficient realization of the two-stage
decimator suitable for real time applications is presented. Both
stages of decimator are realized in the frequency domain.
Filtering is realized by means of fast convolution and
downsampling is realized by rearranging of the spectrum of the
filtered signal.

The idea for fast convolution algorithms lies in the
convolution theorem: multiplication in the frequency domain is
equivalent to convolution in the time domain. In digital signal
processing, frequency domain representation of the signal is
usually obtained by DFT (Discrete Fourier Transform). Inverse
DFT of the product of two DFT sequences actually is a circular
convolution of the corresponding signals in the time domain.
However, in [1] and [2] was shown that linear convolution can
be obtained based on the calculation of the circular convolution
by DFT. Many research papers explored these DFT algorithms
and showed that their results were better regarding efficiency
than using direct convolution with tapped-delay line finite
impulse response (FIR) filters. In order to achieve significant
improvement in time efficiency, the processing signal is
usually divided into blocks and the DFT of each block is

calculated [1]. This ensures speeding up the process, but
introduces additional delay. This is due to the fact that it is
necessary to collect the number of samples equal to the block
length to start processing. Overlap-Add and Overlap-Save are
two most common methods for utilizing fast convolution and
they can be combined with sample rate conversion techniques
according to the work presented in several papers [2], [3]. Also,
it is better to use multistage filtering when large decimation
factors are involved [4]. The goal of this paper is to present the
algorithm which combines the mentioned methods and
implements two-stage frequency domain decimator.
Development of the decimator, signal processing and testing is
implemented in C++ programming language. Kiss FFT (Fast
Fourier Transform) is used for the calculation of the Fourier
transform [5]. It is a C based library, which uses fixed and
floating point data types and it gave satisfactory results during
testing.

After the introductory part, a brief overview of the fast
convolution algorithms will be given. In Section III, the
proposed algorithm is described in detail. Section IV features
the experimental settings and obtained results. The concluding
remarks are given in the last section.

II. FREQUENCY DOMAIN SIGNAL PROCESSING

A. Fast Convolution Methods
Fast convolution algorithms become very useful when the

filter (h(n)) length is greater than 40 to 80 which depends on
the hardware and software being used [6]. The reason for this
lies in the fact that the process requires fewer computations
than directly implemented convolution. The larger the lengths
of the input signal and filter impulse response are, these
advantages become more significant.

Fast convolution gives us output signal with length NCONV.
If the length of the input signal (x(n)) is N, and the number of
filter coefficients is M, then the NCONV = N + M – 1. In order to
achieve this, we have to choose DFT size such that NDFT ≥
NCONV and then zero-pad h(n) and x(n) so that they have new
lengths equal to NCONV.

If the x(n) input sequence becomes very large (i.e.
endless), circular convolution cannot be performed, and some
additional methods are used. The input sequence is partitioned

 - 354 -

into smaller blocks of samples and each block is processed
individually. Overlap-Add method computes a continuous
convolution from smaller convolutions in a buffer-by-buffer
manner. Another technique used in this case is Overlap-Save
which breaks the rules for linear circular convolution
equivalence, i.e. it uses circular convolution without zero-
padding [2].

The Overlap-Add method consists of the following steps
[7]:

• decomposition of the signal into simple components,

• adequate processing (filtering) of each component,

• recombination of the processed components into the
final signal.

The idea is to divide the processing signal x(n) into blocks
and convolve each block with the filter coefficients. If the
length of the each sequence is N, and the filter length is M,
then the length of the resulting signal of each processed block
is N+M–1. The extra M–1 samples are added to the first M–1
samples of the next block. This procedure is repeated until all
samples of the input signal are filtered.

The Overlap-Save method uses a slightly different
approach. The idea is to save the part of the first input block
that contributes to the second output block and use it in that
calculation (input signal is overlapped). After the calculation,
overlapped parts of the output are discarded.

B. Frequency Domain Decimation
Downsampling by factor D can be implemented in the

frequency domain by adding the frequency components to be
aliased. The speed advantage that comes with the smaller
inverse DFT becomes more pronounced at higher decimation
rates. The important condition is that the number of frequency
bins must be a multiple of the decimation rate. Downsampling
as a part of fast convolution has the following conditions [3]:

1. The filter order must be a multiple of decimation rate:

M – 1 = K1D (1)

2. The DFT length must be a multiple of decimation rate:

N + M – 1 = K2D. (2)

In (1) and (2), K1 and K2 are integer values.

III. TWO-STAGE FREQUENCY DOMAIN DECIMATOR
The algorithm is a mixture of different ideas presented in

the papers that consider signal processing in the frequency
domain. The advantage of this method is that the entire
processing for each stage is realized in the frequency domain
(filtering and decimation). As already mentioned, this
advantage becomes more significant as the order of the filter
increases. When the number of filter coefficients exceeds
certain number, this algorithm becomes more efficient than the
direct implementation in time domain. The algorithm is
illustrated in Fig. 1. Since the algorithm utilizes block

processing, the predefined number of samples needs to pass
through the system before the processing can begin.

Signal is processed in blocks of N samples, and each block
is filtered in two stages. The filtering process is carried out in
two stages when the decimation factor is large (D>20). In that
case, the decimation factor in the first stage is chosen using [4]:

)1(2

)2/(1
21 +−

−−
≈

MF
FDF

DD (3)

where F is the ratio of single-stage lowpass filter’s transition
region width to the stopband frequency of the filter (fstop):

stop

passstop

f
ff

F
−

= (4)

The first stage decimation factor is the closest integer value to
(3), which is also a divisor of the total decimation factor. The
second stage decimation factor can be obtained by simply
dividing the total decimation factor with the first stage value.
This equation gives the optimal values for decimation factors
in terms of computational savings.

Parameters of the implemented algorithm for each stage
are:

• N – the number of signal samples in one block for
processing;

• M – filter length;

• D – decimation factor;

• NDFT – DFT size.

All the parameters were evaluated in accordance with the rules
for decimation when using fast convolution, given with (1) and
(2), applied for each stage separately. Also, in order to make
the DFT more efficient, FFT (Fast Fourier Transform)
algorithm can be used. In that case the length of the transform
(NFFT) can be chosen to be power of two (2n, where n is an
integer). This leads to conclusion that, in that case, the filter
order also needs to be 2n.

The first stage (using Overlap-Add method) consists of the
following steps:

1. Zero-pad the filter h(n) with N-1 zeros to make it
length (N+M–1).

2. Calculate the FFT (length N+M–1) of the filter
obtained in the previous step.

3. Analogously, each signal block needs to be zero-
padded with M–1 zeros in order to make it length
N+M–1.

4. Calculate the FFT (length N+M–1) of the signal block
obtained in the previous step.

5. The FFTs of the filter and the signal block are then
multiplied, and the resulting signal is NFFT long.

 - 355 -

6. Coherently add the frequency components to be

aliased. FFT decimation procedure is shown in Fig.
2. Basically, the signal obtained in step 5 needs to be
divided into D equal intervals. Then each element of
the first segment is summed with the corresponding
elements in the other ones. The corresponding
elements are illustrated with the same colors in Fig.
2. The resulting signal is NFFT ⁄D long.

7. Compute the inverse FFT and scale it with factor D.
Note that it is important to provide that this fraction
(N⁄D) is integer.

8. The last (M–1)/D samples obtained in step 7 are
added to the first (M–1)/D samples of the next block
processed.

In the first stage, signal sample rate was decreased D1
times, so N input samples gave N⁄D1 output samples after
applying the first filter. This fraction N⁄D1 must be equal to
n×D2, where n is an integer (n = 1, 2, …) and D2 is second
stage decimation factor. In second stage, all steps from 1-8
are repeated, but with different filter impulse response and
decimation factor. The whole process is repeated until all
samples of the input signal are filtered. In practical
realization, filter impulse response for both stages is pre-
calculated so that there is no additional time consumed on
this computation (steps 1-2) when processing each block of
samples.

The algorithm with Overlap-Save method uses similar
concept as the one with Overlap-Add, with the difference
that the last (M–1)/D samples from the previous block
(previously saved) are used as the first (M–1)/D samples of
the current block (this creates an overlap). When filtering is
applied, then these first (M–1)/D samples are discarded.

IV. EXPERIMENTAL RESULTS
The presented algorithm is evaluated by comparing it

with the time domain two-stage decimator and frequency

domain one-stage decimator. Analysis is based on the
measurement of two parameters: delay and processing time.

Several filters were designed using MATLAB software
package with minimum filter order and the appropriate
passband and stopband attenuation. The filters were zero-
padded in case they did not satisfy (1).

In real-time application, block processing is applied. For
the purpose of this testing, duration of each test signal is
chosen to be fixed. This value assures that the whole signal
can be equally divided into n blocks (where n is an integer
value). In that way, all samples are processed for every set of
fast convolution parameters that was examined.

A. Hardware Configuration
Table I gives specification of the used hardware. Tests

were performed on Ubuntu 14.04.2 operating system which
provided accurate time measurements.

B. Fast Convolution Method vs. Direct FIR
Implementation (One Stage)
As stated before, fast convolution algorithm becomes

efficient when the length of the filter exceeds certain value.
Since this value is greatly influenced by hardware, the first
step is to determine when the usage of the fast convolution
algorithm becomes justified.

The designed filter coefficients were used to process test
signal while utilizing two approaches: fast convolution
algorithm and direct FIR implementation. The number of
coefficients used in this analysis varied from 38 to 84. It was
observed that in this case fast convolution algorithm
outperforms direct FIR decimator when filter length exceeds
45, for the optimal set of fast convolution parameters, which
includes trade-off between time efficiency and the initial
delay. In addition, when the filter length is greater than 80,
fast convolution is more efficient even for the smallest
possible delay. The trade-off between time efficiency and
system delay will be further explained in the next section for
the two-stage implementation.

TABLE I. HARDWARE SPECIFICATION

Hardware Specification
RAM 8 GB
CPU Model Intel(R) Core(TM) i5-4690 CPU @ 3.50GHz
Number of CPU Cores 4
Magnetic Hard Disk Drive Seagate Barracuda 1TB, 3.5"
Operating System Ubuntu 14.04.2 LTS Desktop 64-bit

Figure 2: Frequency domain decimation

Figure 1: Two-stage frequency domain decimator

 - 356 -

C. Analysis of the Two-Stage Frequency Domain
Decimator
In cases where decimation factor is high, it is better to

use multistage decimators. The proposed algorithm is tested
in case of two stages in accordance to (3). The advantage of
the algorithm is that during single stage complete processing
(filtering plus decimation) is done in frequency domain,
which reduces processing interval. The processing is carried
out in blocks, which size depends on the FFT length. With
the increase in block size, the processing time decreases.
Unfortunately, as the block size increases, so does the delay
in the system, if it is used in real-time applications. Larger
FFT length means that more samples are needed for the
calculation. In two-stage approach, FFT length of the second
stage affects the delay more than the one in the first stage.
For large FFT size, the delay can become unacceptable if the
algorithm is used for real-time applications. Specification of
the filters used in this analysis is shown in Table II (sampling
frequency – fs, passband frequency – fpass, stopband
frequency – fstop, passband attenuation – Apass, stopband
attenuation – Astop, filter length – M).

Table III illustrates the previous statements (FCII -
Frequency Domain Two-Stage Decimator, FCI - Frequency
Domain One-Stage Decimator, FIRII - Time Domain Two-
Stage Decimator). It was filled with results for the signal
with initial sampling frequency of 256 kHz. First stage filter
consists of 94 coefficients, while the second stage filter has
110 coefficients (table II). Both filters were zero-padded to
the length of 128. The total decimation factor is 32 (D1 = 16,
D2 = 2), i.e. the resulting sampling frequency is 8 kHz. Time
efficiency measurement refers to the processing interval per
one second of the signal, and it is given in milliseconds. The
initial delay refers to the delay in the fast convolution
algorithm. For example, in case where N1 = N2 = 128, the
algorithm needs 2048 samples in order to start processing.
After this first block is processed, 64 output samples will be
produced.

It can be clearly seen that time efficiency of two-stage
frequency domain decimator increases to certain extent when
using larger blocks of samples. On the other hand, the delay
increases as well, especially with the increase of the block
size in second stage. The best result regarding time
efficiency was obtained for N1 = N2 = 896, but because of
the delay, it is suitable for offline processing. Since this
solution is impractical for real-time applications, in that case
the best choice would be to use blocks of N1 = 896 and N2 =
128.

TABLE II. FILTERS SPECIFICATION

 fs
[kHz]

fpass
[Hz]

fstop
[Hz]

Apass
[dB]

Astop
[dB] M

I Stage 256 3400 12600 0.1 80 94
II Stage 16 3400 4000 0.01 80 110

One-Stage
Equivalent 256 3400 4000 0.11 80 1406

I Stage 216 3400 20600 0.1 85 44
II Stage 24 3400 4000 0.1 80 115

One-Stage
Equivalent 216 3400 4000 0.2 80 1114

TABLE III. DECIMATORS – TIME EFFICIENCY COMPARISON (FFT)

 I Stage II Stage Initial
Delay
[ms]

Time Measurement [ms]

NFFT1 N1 NFFT2 N2 FCIIa FCIb Direct
FIRIIc

256 128

256 128

8 33.84

34.85
(NFFT = 4096

N = 2048
Delay = 8 ms)

24.57
(NFFT = 8192

N = 6144
Delay = 24 ms)

51.8

512 384 9 25
1024 896 10.5 21.45
2048 1920 15 22.02
256 128

512 384

24 33.17
512 384 24 23.85

1024 896 24.5 20.46
2048 1920 30 21.27
256 128

1024 896

56 33.02
512 384 57 23.7

1024 896 56 19.95
2048 1920 60 20.88

a. Frequency Domain Two-Stage Decimator

b. Frequency Domain One-Stage Decimator

c. Time Domain Two-Stage Decimator

It can also be observed that the increase of the second
stage signal length greatly increases the delay, which is
consistent with the previous claims. The optimal fast
convolution parameters can be determined for different
filters and decimation rates by performing this type of
analysis.

Table III also gives time measurements for one-stage
frequency domain decimator (with the equivalent filter from
table II) and time domain two-stage decimator (which uses
the same filters as FCII). The usage of time domain one-
stage decimator was not taken into consideration, since it
would be highly impractical. The results justify the usage of
the proposed algorithm.

The analysis can also be performed when the size of
Fourier transform is not 2n (table IV). In this case, there are
more possible values, which can satisfy (1) and (2), which
can reduce the delay in the system. The problem actually
comes down to the DFT efficiency. The parameters must be
chosen in a manner which would avoid dealing with the
known problems in this field (like calculating inverse Fourier
Transform with the size which is a prime number, etc.). As
an example, test signal with the initial sampling frequency of
216 kHz and total decimation factor of 27 (D1 = 9, D2 = 3)
was used. The designed filter for the first stage had 44, and
for the second stage 115 coefficients (table II). The second
filter is zero-padded to the 117.

TABLE IV. DECIMATORS – TIME EFFICIENCY COMPARISON (DFT)

I Stage II Stage Initial
Delay
[ms]

Time Measurement [ms]

NDFT1 N1 NDFT2 N2 FCIIa FCIb Direct
FIRIIc

90 45

234 117

5 33.96 38.43
(NDFT = 2268

N = 1134
Delay = 5.25 ms)

26.03

(NDFT = 4536
N = 1134

Delay = 15 ms)

25.85

180 135 5 25.55
225 180 5 22.51
270 225 5.21 22.40
360 315 5.83 22.68
720 675 6.25 21.62

a. Frequency Domain Two-Stage Decimator

b. Frequency Domain One-Stage Decimator

c. Time Domain Two-Stage Decimator

 - 357 -

The results are consistent with the previous analysis. The
difference is that decreased DFT efficiency and filter length
reduce the advantage of the frequency domain decimators.

V. CONCLUSION
The purpose of this paper is to present an efficient

algorithm for combining filtering and decimation of the
signal in the frequency domain for large decimation rates. It
uses fast convolution methods and it is realized in two stages
in order to improve time performance of the signal
processing. The algorithm implements either Overlap-Add or
Overlap-Save method and can be used for real-time
applications. Development of the system, including signal
processing and testing of the various signals and filters, was
implemented in C++ programming language.

As expected, the first part of the analysis showed that the
fast convolution algorithm outperforms direct FIR
implementation when the number of filter coefficients
exceeds 45 with the usage of optimal parameters. One-stage
implementation becomes impractical for time domain
decimator and less efficient for frequency domain decimator
in case of large decimation factors. Therefore, the proposed
algorithm utilizes the advantages of two-stage processing
which leads to further improvement in time efficiency at the
expense of the initial delay. The second part of the analysis
addresses to this trade-off.

Time efficiency of the proposed algorithm can be further
improved with the improvement of the FFT efficiency.
Depending on the usage, the filters can be chosen in a
manner which would minimize the initial delay.

REFERENCES

[1] I. Selesnick, C. Burrus, "Fast Convolution and Filtering," in The
Digital Signal Processing Handbook, V. Madisetti and D. Williams,
Eds. CRC Press, 1999, pp. 8.1-8.21.

[2] M. Borgerding, "Fast Convolution (FFT) Filtering: From Basics to
Filter Banks", Comp.DSP Conference, July, 2004.

[3] M. Borgerding, "Turning Overlap-Save into a Multiband Mixing,
Downsampling Filter Bank", IEEE Signal Processing Magazine,
March, 2006.

[4] R. G. Lyons, “Sample Rate Conversion,” in Understanding Digital
Signal Processing, New Jersey, USA: Prentice Hall, 2011, ch. 10, pp.
304–306.

[5] http://sourceforge.net/projects/kissfft/
[6] R. G. Lyons, “Fast FIR Filtering Using The FFT,” in Understanding

Digital Signal Processing, New Jersey, USA: Prentice Hall, 2011, ch.
13, pp. 416–419.

[7] S. W. Smith, “FFT Convolution” in The Scientist and Engineer’s
Guide to Digital Signal Processing, Second Edition, San Diego,
California Technical Publishing, 1999, ch. 18, pp. 311–316.

