
INFOTEH-JAHORINA Vol. 13, March 2014.

- 1237 -

Model Driven Software Development – State of The

Art and Perspectives
(Invited paper)

Branko Perisic

Computers and Control Department

The University of Novi Sad, Faculty of Technical Sciences,

Novi Sad, Serbia

perisic@uns.ac.rs

Abstract— Modern day system developers have some

serious problems to cope with. The systems they develop

are becoming increasingly complex as customers demand

richer functionality delivered in ever shorter timescales. If

we simply replace word system with software we arrive to

the origin of eternal software development questions and

dilemmas. The evolution of software engineering discipline

is characterized by the methodology proposals aiming to

answer these questions mainly sublimated as how to

produce working software artifacts according to the

customer needs, in time and within the budget? According

to that The Rapid Software Development Methodologies

became a challenging issue for Software Engineering

discipline. In this paper Model Driven Software

Development is analyzed from two underlining aspects: the

state of the art and the future perspectives.

Keywords-Software; Metamodeling; Model Driven Software

Development; Model Driven Architecture; Software Development

Methodologies;

I. INTRODUCTION

.

If we look to the history of software development it
can be said that its professional age starts with the
formulation of Software Engineering Body of
Knowledge (SWEBOK).

In 1958, John Wilder Tukey, one of the most
influential statisticians, has introduced the term software.
ISO/IEC/IEEE Systems and Software Engineering
Vocabulary (SEVOCAB) defines software engineering
as “the application of a systematic, disciplined,
quantifiable approach to the development, operation, and
maintenance of software”.

Contemporary system developers have some serious
problems to cope with. The systems they develop are
becoming increasingly complex as customers demand
richer functionality delivered in ever shorter
timescales.[2] They are exposed to a huge diversity of

implementation technologies, design techniques and
development processes, particularly the latest ’silver
bullet’ design abstraction - Model Driven Software
Development.

Looking from Tukeys’ perspective, during the past
56 years, software engineering has evolved from a
conference catchphrase (the term software engineering
was used in the title of a NATO conference held in
Germany in 1968.) into an matured engineering
profession, characterized by [1]:

• a professional society (The IEEE Computer

Society first published its Transactions on

Software Engineering in 1972);

• standards that specify generally accepted

professional practices (A committee for

developing software engineering standards was

established within the IEEE Computer Society in

1976. The standard was completed in 1995 with

designation ISO/IEC 12207 and given the title of

Standard for Software Life Cycle Processes.)

• Software Engineering Body of Knowledge
(SWEBOK)(The IEEE version of 12207 was

published in 1996 and provided a major

foundation for the body of knowledge captured in

SWEBOK 2004. The current version of 12207 is

designated as ISO/IEC 12207:2008 and IEEE

12207-2008 and provides the basis for SWEBOK

V3.)

• a code of ethics;

• conference proceedings;

• textbooks;

• curriculum guidelines and curricula;

• accreditation criteria and accredited degree

programs;

• certification and licensing.

- 1238 -

A. Software Development as Goal-directed Cooperative

Game of Inventoion and Communication

An alternative underlying model for software

development is presented in [3]. According to

Cockburn’s article, software development may be seen

as a series of resource-limited, goal-directed cooperative

games of invention and communication. The primary

goal of each game is the production and deployment of a

software system; the residue of the game is a set of

markers to assist the players of the next game. The next

game is an alteration of the system or the creation of a

neighboring system. Each game therefore has as a

secondary goal to create an advantageous position for

the next game.

Since each game is resource-limited, the primary and

secondary goals compete for resources. The cooperative

game model provides the benefits that the software

engineering model misses:

• It raises to the proper priority level issues crucial

to successful software projects;

• it explains how teams with messy-looking

processes sometimes outperform others with tidier

processes;

• it helps busy practitioners decide how to respond

to unexpected situations.

• it is seen that much of engineering in the general

belongs in the category of resource-limited,

cooperative games [3].

B. The Levels of Abstraction and Reusability

The history of software development is a history of

raising the level of abstraction and the level of

reusability.

Raising the level of abstraction changes the platform

on which each layer of abstractions depends [4].

Raising the level of reuse assumes that the teams share

defined interfaces, working to build components that can

simply be plugged together at the end of the project.

Components and frameworks are rarely plug-and-play,

and teams can spend inordinate amounts of time writing

"glue code" to stick components together properly [4].

Components and Frameworks are not at the highest

reusability level. More reuse may be found concerning

databases and data servers and general services that rely

on implementation technologies.

C. Programming and Modeling Today

It is essential to distinguish Software Development

from Programming. Software development includes

aspects such as requirements engineering, development

processes, software design, and documentation. The

programming is usually seen like an act of constructing

creating and testing an instance of implementation.

The main tools for programming today are general

purpose programming languages such as Java, C#,

C/C++, Piton, Scala or Ruby. They typically use

procedural, functional, or object oriented abstractions in

various combinations. However, to build nontrivial

applications, any number of additional languages and

formalisms are required, including XML, HTML or state

charts.

The use of Frameworks is in its expansion. In the Java

world, prominent examples include JEE, Spring or

Hibernate. They typically come with their own

configuration “languages”, usually XML-based.

Unfortunately, the integration between the various

languages, frameworks, and technologies is often limited

and usually based on name references.

Architectural concepts cannot be represented as first-

class entities in programs, leading to all kinds of

maintainability problems as well as limited analyzability

and tool support due to the existence of:

• hierarchical components and instances,

• ports,

• protocols,

• pre- and post conditions,

• messages,

• queue,

• data replication specifications,

• persistence mappings, or

• synchronization.

For example Software Components are often

represented as: all the classes in a package, a façade

class that is registered in some kind of configuration file

or maybe an XML descriptor that somehow captures the

metadata about the component.

On the other hand, model represents a specification of

the function, structure and behavior of a system within a

given context, and from a specific point of view. It is

often represented by a combination of drawings and text,

augmented where appropriate with natural language

expressions.

Modeling leads to formal specification building based

on the language that has well defined meaning

associated with each of its constituents. This formalism

- 1239 -

distinguishes the model from a simple drawings and

allows it to be expressed in a well-defined format, such

as XML, in accordance with an underlining XMI

schema.

II. METHODOLOGICAL ASPECTS OF

ENGINEERING SOFTWARE

Engineering disciplines tend to use the terms method

and methodology interchangeably. From this perspective

a development method may be defined as a codified

conceptual framework that aids the act of applying a

systematic approach to create a set of interrelated

artifacts, which ultimately lead to the system that shall

exhibit either stated or unstated properties. The

Development Method encapsulates The Development

Process and The Development Artifacts.

MDE has several representative research movements

and institutionalized paradigms that are unavoidable now

or in the future.

They are: The Model Driven Software Development

(MDDS), Model Driven Engineering (MDE), Model

Integrated Computing (MIC), Language Oriented

Programming (LOP), Domain-Specific Modeling

(DSM), Generative Programming, Framework Specific

Modeling (FSM), Executable UML (xUML), The OMG

Model Driven Architecture (MDA), Agile MDA,

etc.[6,7,9] Domain analysis, meta modeling, model-

driven generation, template languages, domain-driven

framework design, and the principles for agile software

development form the backbone of this approach, of

which OMG’s MDA is a specific flavor.

A. MDSD – Model-Driven Software Development

Model-Driven Software Development is a software

development approach based on the idea of developing

software from domain-specific models. The ultimate

aims of MDDS is the improving productivity and

maintainability of software by raising the level of

abstraction from source code, written in a general

purpose language, to high-level, domain-specific models

such that developers can concentrate on application logic

rather than the inherent complexity of low-level

implementation details [6,7,9].

Considering the modeling paradigm, as an approach to

the rapid software development, there are two basic

directions that constitute the state of the art and the

perspectives of software development. [6]

From the point of view of software designers there are

two main roles assigned to models and modeling. One

treats underlining model as an analytical tool for better

understanding of problem domain, requirements

analysis, design specification and overall project

documenting.

The other treats the model as an high level executable

that constitutes the foundation for automatic code

generation on targeted implementation platform.

B. MBE Model- Based Engineering

Model-Based Engineering (MBE) is a key enabling

technology for developers that seek the transition from

traditional systems development processes, that are

document-based and code-centric, to more effective

processes that are requirements-driven and architecture-

centric.

MBE is an umbrella term that subsumes several sub-

disciplines: Model-Driven Development (MDD), which

focuses on software-intensive applications; Model-Based

Systems Engineering (MBSE), which focuses on

Systems Engineering applications; Business Process

Modeling (BPM), which focuses on Business Analysis

applications; and Ontology Engineering (OE), which

focuses on Knowledge Engineering applications. (Figure

1.)

Figure 1. The Object model of models relationships

MBE, MDE and MDD, may be used interchangeably,

and are usually treated as software and systems

development paradigms that emphasize the application

of visual modeling principles and best practices

throughout the System (or Software) Development Life

Cycle (SDLC).

MBE encourages developers to use models to

describe both the problem and its solution at different

levels of abstraction, and provides a framework for

methodologists to define what model to use at a given

level of abstraction, and how to lower the level of

- 1240 -

abstraction by defining the relationship between the

participating models.

An MBE process should define:

• how many levels of abstraction are there, and

what platforms have to be integrated;

• what are the modeling notations and the abstract

syntax to be used at each level of abstraction;

• how refinements are performed, and what

platform and additional information they

integrate into the lower level of abstraction;

• how code is generated for the modeling

language used at the lowest level of abstraction,

and perhaps even how to deploy that code;

• how can a model be verified against the upper

level model, how can it be validated, and how

can it generate test cases for the system under

development.

C. MIC – Model-Integrated Computimg

Model-Integrated Computing (MIC) - has been

developed over two decades at ISIS, Vanderbilt

University, for building a wide range of software

systems. [36]

MIC focuses on the formal representation,

composition, analysis, and manipulation of models

during the design process. It refines and facilitates

“model-based development” by providing three core

elements:

• the technology for the specification and use of

domain-specific modeling languages (DSML);

• the fully integrated meta-programmable MIC

tool suite; and

• an open integration framework to support formal

analysis tools, verification techniques and model

transformations in the development process.

 Software and systems development in the MIC

framework includes three technology components:

• technology for building, analyzing, and

managing models;

• technology for transforming models into

executable programs and/or analyzable for

system engineering tools; and

• technology for integrating applications on

heterogeneous parallel/distributed computing

platforms.

The MIC Software and System Development

process is comprised of three levels:
• The Application Level represents the synthesized,

adaptable software applications. The executable

programs are specified in terms of a Composition

Platform (e.g. CORBA, Multigraph Computational

Model (MCM) and others).

• The Model-Integrated Program Synthesis Level

(MIPS) comprises domain specific modeling

languages (DSML) and tool chains for model

building, model analysis, and application synthesis.

• The Meta-Level of MIC provides metamodeling

languages, metamodels, metamodeling environments

and metagenerators for creating domain specific tool

chains on the MIPS level. [36]

According to the generic components of the MIC

tool architecture are:

• Generic Model Environment (GME),

• Model Management tool suite (UDM),

• Model Transformation tool suite (GReAT), and

• Design Space Exploration tool suite (DESERT).

D. LOP - Language Oriented Programming

Language oriented programming (LOP) is a style of

computer programming in which, rather than solving

problems in general-purpose programming languages,

the programmer first creates one or more domain-

specific languages for the problem, and solves the

problem in those languages.

The concept of language oriented programming takes

the approach to capture requirements in the user's terms,

and then to try to create an implementation language as

isomorphic as possible to the user's descriptions, so that

the mapping between requirements and implementation

is as direct as possible.

A measure of the closeness of this isomorphism is the

"redundancy" of the language, defined as the number of

editing operations needed to implement a stand-alone

change in requirements.

It is not assumed a-priori what is the best language

for implementing the new language. Rather, the

developer can choose among options created by analysis

of the information flows — what information is

acquired, what its structure is, when it is acquired, from

whom, and what is done with it.

E. DSM – Domain-Specific Modeling

Domain-Specific Modeling raises the level of

abstraction beyond programming by specifying the

- 1241 -

solution directly using domain concepts. The final

products are generated from these high-level

specifications. Industrial experiences have consistently

shown DSM to be 5-10 times more productive than

current software development practices. [10]

According to Software Productivity Research, the

average productivity in Java is only 20% better than in

BASIC. C++ fares no better than Java. If we go back a

couple of decades more, there is a radical change: a leap

in productivity of 400% from Assembler to BASIC. The

400% increase was because of a step up to the next

level of abstraction. Each statement in C++, BASIC or

Java corresponds to several Assembler statements and,

more importantly, program statements, written in these

languages, can be automatically translated into

Assembler. [10]

Traditional modeling languages, like UML, have not

increased productivity, since the core models are on the

same level of abstraction as the programming

languages supported. UML tries to be all things to all

men, and thus cannot raise the level of abstraction

above the lowest common denominator. UML has its

benefits because of visual nature that makes diagrams

more expressive and easy to read and analyze.

Domain-Specific Modeling raises the level of

abstraction and hides today's programming languages, in

the same way that today's programming languages hide

assembler. This is a whole level of abstraction higher

than UML, and makes each symbol worth several lines

of code. The application is automatically generated from

these high-level specifications with domain-specific

code generators, aided where necessary by existing

component code.

Figure 2. DSM Foundation

As an expert has specified the code generators, they

produce products with better quality than could be

achieved by normal developers by hand. In order to

support DSM with full automatic code generation it is

essential to develop three main components (See Figure

2.):

• a domain-specific modeling language and editor;

• a domain-specific code generator; and

• a domain-specific component library.

1) Developing the domain-specific modeling language and

editor

In MDE, a Domain-Specific Language (DSL) [8] is a

specialized language, which, combined to a

transformation function, serves to raise the abstraction

level of software and ease software development. The

experience and intuition of the expert, combined with

hints from the component library, domain rules and

architects are the real sources of clues. Metamodeling

languages can be applied here to describe both the

domain rules and their mappings. A toolset that allows

rapid prototyping is practically a necessity because it

enables creating a part of the metamodel as a prototype,

and instantly test it by making an example model.

However, in practice, beyond this general definition,

DSLs adopt multiple forms of representation and

implementation. The reason of a DSL feature model is to

formalize DSL and DSL tool variants:

• A first application of this feature model is a DSL

tool factory, which applies variations during

production of DSL tools

• A second application is the selection of pertinent

DSL families among all possible families from

the feature model. A third application is the

definition of DSL tool foundations. A fourth

usage is the selection of DSL tools.[8]

2) Developing the code generator

The code generation definition forms the final task,

conceptually if not chronologically. In practice there will

be a large degree of parallelism and incrementality

between all three tasks. The DSM tool should provide

the necessary functionality for creating such generation

scripts, and should guide the expert where possible by

allowing him to reference and use the concepts in the

metamodel.

Of all the phases, code generation probably varies the

most between domains. In some domains it will be

possible to produce a large fraction of code with a

relatively simple code generation scripting language,

such as is already provided in most DSM toolsets. In

other domains, it may be necessary to use a more

powerful language to operate on data exported from the

- 1242 -

modeling tool. The most important goal is that the end

user should be able to use the code generation simply.

3) Assembling the component library

A domain-specific component library is not

always necessary, but it makes the task of code

generation development significantly easier. Often, code

components already exist from earlier development

cycles, at least in the form of reusable pieces of code.

Further developing these pieces of code into true

components is a relatively easy task for the expert,

requiring only the normal developer programming tools.

In addition to domain-specific components developed in-

house, the library can of course contain generic third-

party components.

F. GP - Generative Programming

Generative programming (GP) has a larger scope

since it includes automatic configuration and generic

techniques, and provides new ways of interacting with

the compiler and development environment.

The main GP goals are to:

• decrease the conceptual gap between program

code and domain concepts (known as achieving

high intentionality);

• achieve high reusability and adaptability;

• simplify managing many variants of a

component; and

• increase efficiency (both in space and execution

time).

To meet these goals, GP deploys several principles:

• Separation of concerns: To avoid program code

which deals with many issues simultaneously,

generative programming aims to separate each issue

into a distinct set of code. These pieces of code are

combined to generate a needed component.

• Parameterization of differences: As in generic

programming, parameterization allows us to

compactly represent families of components (i.e.

components with many commonalities).

• Analysis and modeling of dependencies and
interactions: Not all parameter value combinations are

usually valid, and the values of some parameters may

imply the values of some other parameters. These

dependencies are referred to as horizontal configuration

knowledge, since they occur between parameters at one

level of abstraction.

• Separating problem space from solution space: The

problem space consists of the domain-specific

abstractions that application programmers would

like to interact with, whereas the solution space

contains implementation components. Both spaces

have different structures and thus we map between

them with vertical configuration knowledge. The

term vertical refers to interaction between

parameters of two different abstraction levels.

• Eliminating overhead and performing domain-

specific optimizations: By generating components

statically (at compile time), much of the overhead

due to unused code, runtime checks, and

unnecessary levels of indirection may be eliminated.

Complicated domain-specific optimizations may

also be performed.

There are three other programming paradigms which

have similar goals to Generative Programming:

• Generic programming;

• Aspect-Oriented Programming (AOP); and

• Domain-Specific Languages (DSLs).

Generic Programming may be summarized as

“reuse through parameterization.” Generic programming

allows components which are extensively customizable,

yet retain the efficiency of statically configured code.

This technique can eliminate dependencies between

types and algorithms that are conceptually not necessary.

However, generic programming limits code generation

to substituting concrete types for generic type parameters

and welding together pre-existing fragments of code in a

fixed pattern.

Aspect-Oriented Programming (AOP) Most

current programming methods and notations concentrate

on finding and composing functional units, which are

usually expressed as objects, modules, and procedures.

However, several properties such as error handling and

synchronization cannot be expressed using current (e.g.

OO) notations and languages in a cleanly localized way.

Instead, they are expressed by small code fragments

scattered throughout several functional components.

AOP decomposes problems into functional units and

aspects (such as error handling and synchronization). In

an AOP system, components and aspects are woven

together to obtain a system implementation that contains

an intertwined mixture of aspects and components.

Weaving can be performed at compile time (e.g. using a

compiler or a preprocessor) or at runtime (e.g. using dynamic

reflection).

- 1243 -

G. FSP – Framework-Specific Modeling

In an Framework Specific Model (FSM) each

concept instance is characterized by a configuration of

features. Features correspond to code patterns that

implement them in the application, such as classes

implementing framework interfaces, calls to framework

methods, and ordering of such calls

A framework provides a set of abstractions, referred

to as framework-provided concepts, and means of

instantiating them in the framework completion code.

The concepts are instantiated by writing the completion

code. Object-oriented application frameworks are one of

the most effective and widely used software reuse

technologies today. The resulting framework completion

code implements the difference in functionality between

the framework and the desired application.

 A Framework-specific modeling languages (FSML)

is a Domain-Specific Modeling Language that is

designed for a specific framework, called its base

framework. A FSML consists of an abstract syntax, a

mapping of the abstract syntax to the framework API,

and, optionally, a concrete syntax.[11,12,13]

The mapping of the abstract syntax to the framework

API defines how concepts and their features map to the

framework completion code. The mapping has two parts:

• the forward mapping, defining how to generate

new code or update existing code for a concept

instance; and

• the reverse mapping, defining how to recognize

an instance of a concept in the code.

Figure 4. FSM Foundation constructs

The mappings are defined for every concept and

every feature individually, allowing for a fine-grained

control over mapping execution. The concrete syntax

may offer specialized rendering of the models to

enhance their comprehension.

The main constructs of the FSM foundation, in the

form of collaboration diagram, are shown in Figure 4.

The framework API (implicitly) provides a set of

domain-specific concepts along with the constraints on

their instantiations. The application code uses the API by

implementing instances of these concepts. A concept

instance is implemented through code patterns that

adhere to the rules and constraints of the API.

Code patterns can be structural (e.g., subclassing a

framework class) or behavioral (e.g., calling a

framework method in the control flow of an object, order

of method calls).

Figure 5. illustrates the three levels of FSML

approach.

Figure 5. The levels of FSML approach

Object-oriented frameworks are widely used and

provide domain-specific concepts, which are generic

units of functionality.

Eclipse [14] is a universal, open-source platform for

building and integrating tools, which is implemented as

a set of Java-based object-oriented frameworks.

Workbench parts are the basic building blocks of the

Eclipse Workbench, which is the working area of an

Eclipse user. The parts can interact in various ways, for

example, by exchanging events.

H. xUML - Executable UML

Executable UML is at the next higher layer of

abstraction of the problem space based on the object-

oriented programming language. It bridges the gap

between the UML-based design models and the

implementation. [15]

The executable models can be compiled or translated

to a less abstract programming language, which can be

deployed on various platforms for specific

implementation. Executable UML [16] means an

execution semantics for a subset of actions sufficient for

computational completeness. Two basic elements are

- 1244 -

Figure 6. MDA - The Basic Environment

required for such subsets: an action language and an

operational semantics.

The action language specifies the elements that can

be used and the operational semantics establishes how

the elements can be placed in a model, and how the

model can be interpreted.

Executable UML also allow directly executing UML

models. It provides an evolutionary model-driven

solution to express software. Rather than elaborate an

analysis product into a design product and then write

code, application developers of executable UML relay

on tools to translate abstract application constructs into

executable entities. The executable models can be

executed given a runtime environment, which also

means that they can be validated early in the

development lifecycle, as well as be translated to target

code achieving near 100% code generation.

Existing executable UMLs can be divided into two

kinds. The first kind of executable UML defines an

Object Management Group (OMG) action-semantics-

compliant language (ASCL) for well-defined,

computationally complete formalism. This kind includes

executable and translatable UML (xtUML) [17] and

xUML [18].

The second kind of executable UML provides action

language using simply C, C++, Ada, Java or VBA code.

XIS-xModels [19] and Rhapsody [20] provides such

executable UML.

I. OMG MDA - The OMG Model Driven Architecture

The Object Management Group™ (OMG™) was
formed as a standards organization to help reduce
complexity, lower costs, and hasten the introduction of
new software applications. One of the major initiatives
through which the OMG is accomplishing this goal is by
the promotion of Model Driven Architecture® (MDA®)
as an architectural framework for software development.
This framework is built around a number of detailed
OMG specifications, which are widely used by the
development community. [7,9]

In 2001 the OMG adopted the Model Driven
Architecture as an approach for using models in software
development. Its three primary goals are portability,
interoperability and reusability through architectural
separation of concerns.

One fundamental aspect of MDA is its ability to
address the complete development lifecycle, covering
analysis and design, programming, testing, component
assembly as well as deployment and maintenance. [7,9]

The Figure 6. shows the basic MDA environment,

according to the OMGs conceptual view. With new

platforms and technologies constantly emerging, MDA

enables the rapid development of new specifications that

leverage them, and streamlines the process of their

integration. In this way MDA provides a comprehensive,

structured solution for application interoperability and

portability into the future. Precise modeling of the

solution domain in UML provides the added advantage

of capturing its inherent intellectual property in a

technology neutral way.

1) MDA – Model Driven Architecture The Major Concepts

In terms of standards, MDA proposes the Meta

Object Facility (MOF) [9], a specification that has

proven its accuracy in defining the abstract syntaxes of

several modeling languages, and that was implemented

by several tools.

Major MDA concepts are:

• system (The context of MDA is the software

system, either preexisting or under construction.)

• model (A model is a formal specification of the

function, structure and behavior of a system

within a given context, and from a specific point

of view.)

• model driven (Describes an approach to software

development whereby models are used as the

- 1245 -

Figure 7. MDA - The thansformation of models

primary source for documenting, analyzing,

designing, constructing, deploying and

maintaining a system.)

• architecture (The architecture of a system is a

specification of the parts and connectors of the

system and the rules for the interactions of the

parts using the connectors. Within the context of

MDA these parts, connectors and rules are

expressed via a set of interrelated models.)

• viewpoint (A viewpoint is an abstraction technique for

focusing on a particular set of concerns within a system

while suppressing all irrelevant detail. A viewpoint

can be represented via one or more models.)

MDA specifies three default viewpoints of a

system: computation independent (CI), platform

independent (PI) and a platform specific (PS).

• platform (A platform is a set of subsystems and

technologies that provide a coherent set of

functionality through interfaces and usage

patterns.)

• platform independency (Platform independence is

a quality that a model may exhibit when it is

expressed independently of the features of another

platform.)

• platform model (A platform model describes a set

of technical concepts representing its constituent

elements and the services it provides. It also

specifies constraints on the use of these elements

and services by other parts of the system.)

• model transformation (Model transformation is

the process of converting one model to another

within the same system. The transformation

combines the platform independent model with

additional information to produce a platform

specific model.)

• implementation (An implementation is a

specification that provides all the information

required to construct a system and to put it into

operation.)

• MDA models (MDA specifies three default

models of a system corresponding to the three

MDA viewpoints defined above. These models

can perhaps more accurately be described as

layers of abstraction, since within each of these

three layers a set of models can be constructed,

each one corresponding to a more focused

viewpoint of the system (user interface,

information, engineering, architecture, etc.)).

o Computation Independent Model (CIM) is

also often referred to as a business or domain

model because it uses a vocabulary that is

familiar to the subject matter experts (SMEs).

It presents exactly what the system is expected

to do, but hides all information technology

related specifications to remain independent

of how An MDA mapping provides

specifications for how to transform a PIM into

a particular PSM. The target platform model

determines the nature of the mapping. The

CIM plays an important role in bridging the

gap which typically exists between these

domain experts and the information

technologists responsible for implementing

the system. In an MDA specification the CIM

requirements should be traceable to the PIM

and PSM constructs that implement them (and

vice-versa).

o Platform Independent Model (PIM) exhibits

a sufficient degree of independence so as to

enable its mapping to one or more platforms.

This is commonly achieved by defining a set

of services in a way that abstracts out

technical details. Other models then specify a

realization of these services in a platform

specific manner.

o Platform Specific Model (PSM) combines the

specifications in the PIM with the details

required to stipulate how a system uses a

particular type of platform. If the PSM does

not include all of the details necessary to

produce an implementation of that platform it

is considered abstract (meaning that it relies

on other explicit or implicit models which do

contain the necessary details).

J. The MDA Process

Whatever the ultimate target platform may be, the first

step when constructing an MDA-based application is to

create a platform-independent model expressed via

UML.

This general model can then be transformed into one

or more specific platforms such as CCM, EJB, .NET,

SOAP, etc.

A complex system may consist of many interrelated

models organized along well defined layers of

abstraction, with mappings defined from one set of

models into another.

Within this global set of models horizontal

transformations may occur inside a single layer of

- 1246 -

Figure 8. MDA - Model

abstraction, in addition to the typical vertical

transformations across layers.

Beyond the perhaps simplistic notion of

CIM/PIM/PSM, the two key concepts of MDA are

models and transformations. Figure 7. shows the basic

MDA Process model.

Figure 8. illustrates various concepts involved in an

MDA transformation for a given platform (i.e. target

model) via UML class diagram notation. It distinguishes

between the abstract view of the platform’s

transformation directives, and a concrete implementation

in the context of a specific source model to be

transformed into this platform.

K. Agile Model Driven Architecture (AMDA)

As the name implies, AMDD is the agile version of

Model Driven Development (MDD). An agile MDA

process [21] applies the main Agile Alliance principles

(e.g. testing first, immediate execution [22, 23]) into a

classical MDA process [24, 25].

The difference with AMDD is that instead of creating

extensive models before writing source code you instead

create agile models which are just barely good enough

that drive your overall development efforts.

AMDD is a critical strategy for scaling agile software

development beyond the small, co-located team

approach that we saw during the first stage of agile

adoption.[26]

Figure 9. depicts a high-level lifecycle for AMDD for

the release of a system. The envisioning includes two

main sub-activities, initial requirements envisioning and

initial architecture envisioning.

These are done during iteration 0, iteration being

another term for cycle or sprint.

Figure 9. Agile Model Driven Development – Projec

Level [26]

 "Iteration 0" is a common term for the first iteration

before you start into development iterations, which are

iterations one and beyond (for that release). The other

activities: iteration modeling, model storming, reviews,

and implementation potentially occur during any

iteration, including iteration 0.

The time indicated in each box represents the length

of an average session.

III. THE CURRENT MDE TECHNIQUES AND THEIR

LIMITATIONS

The currently existing techniques that address the

reusability of assets provided by methodologists are

defined either at metamodeling or model transformation

level.

One such technique is the basic package dependency.

This relationship enables methodologists to reuse

concepts defined by other metamodels when defining

new metamodels. Additional OCL constraints [23] may

be used as well in order to better tailor the imported

package to the exact needs. However the package

dependency technique requires the existence of packages

of such reusable metamodels.

Another technique is profiling, [32,33] which allows

an external asset, also referred to as a profile, to extend a

given metamodel for storing new information in the

conforming models. The profiling technique is mainly

based on the principles of branding (i.e., stereotypes)

and associated key/value pairs (i.e., tags). It provides

methodologists with the possibility to enhance

metamodels independently from the methodology.

Model transformations are supposed to be reusable

due to the interoperability that MOF QVT provides.

Since all transformation languages are supposed to have

- 1247 -

Figure 9. MDA – QVT Declarative Part

a common minimal core at abstract syntax level, a

transformation may invoke, or even extend, another

transformation. This specification provides the

architecture, languages, operational mappings, and core

language for the MOF 2.0 Query, View, and

Transformation (QVT) specification. The specification

defines three related transformation languages:

Relations, Operational Mappings, and Core...

QVT language conformance is specified along two

orthogonal dimensions: the language dimension and the

interoperability dimension. Each dimension specifies a

set of named levels. Each intersection of the levels of the

two dimensions specifies a valid QVT conformance

point. All conformance points are valid by themselves,

which implies that there is no general notion of “QVT

conformance.” Instead, a tool shall state which

conformance points it implements.

The declarative parts of this specification are

structured into a two-layer architecture (Figure 9.).

The layers are:

• A user-friendly Relations metamodel and

language that supports complex object pattern

matching and object template creation. Traces

between model elements involved in a

transformation are created implicitly.

• A Core metamodel and language defined using

minimal extensions to EMOF and OCL. All trace

classes are explicitly defined as MOF models,

and trace instance creation and deletion is defined

in the same way as the creation and deletion of

any other object.

Another important technique to be taken into account

is semantically rich metamodels, i.e., metamodels that

come along with specific support to address an issue that

has been neglected till then.

IV. MDDS – CODE GENERATION

The realization of model-driven software development

requires effective techniques for implementing code

generators for domain-specific languages. [29,34,35]

The core technique is code generation by model

transformation, that is, the generation of a structured

representation (model) of the target program instead of

plain text.

This approach enables the transformation of code after

generation, which in turn enables the extension of the

target language with features that allow better

modularity in code generation rules.

The technique can also be applied to ‘internal code

generation’ for the translation of high-level extensions of

a DSL to lower-level constructs within the same DSL

using model-to-model transformations.

V. INSTEAD OF CONCLUSSION - THE

IMPORTANCE OF MENTAL MODELS CREATION

Designing something requires the complete

understand what a stakeholder wants to get done. Where

support and behavior are aligned, you have a solution.

Where a behavior is not supported, you have an

opportunity to explore further.[40]

Empathy with a person is distinct from studying how

a person uses something. Empathy extends to knowing

what the person wants to accomplish regardless of

whether he/she has or is aware of the thing that is being

are designed. It is essential to know the person’s goals

and what procedure and philosophy she follows to

accomplish them.[40]

Mental models give you a deep understanding of

people’s motivations and thought-processes, along with

the emotional and philosophical landscape in which they

are operating.

To create a mental model, you talk to people about

what they’re doing, look for patterns, and organize those

patterns from the bottom up into a model.[40]

The three main reasons that describe the advantages

of mental models are:

• Confidence in Your Design — guide the design

of the solution;

• Clarity in Direction — make good user and

business decisions;

• Continuity of Strategy — ensure longevity of

vision and opportunity.

- 1248 -

The mental model method is a qualitative approach

based on interpretation of data that looks like a scientific

method. It is a hybrid produced by science and intuition;

it’s a little of both. It is a very successful method in

environments where people are looking to support

decisions with real data.

It is also enormously useful in environments where

teams can define and communicate product/information

design with more intuitive techniques.

REFERENCES

[1] Rakesh Radhakrishan, Mike Wokey, “Model Driven Architecture

Enabling Service Oriented Architecture”, Sun Microsystems, 2004.

[2] Markus Völter, Jorn Bettin, Patterns for Model-Driven Software-
Development, Version 1.4, May 10, 2004

[3] Alistair Cockburn,”The End of Software Engineering and The Start of
Economic-Cooperative Gaming”, ComSIS Vol. 1, No. 1, February 2004

[4] Tony Clark, Andy Evans, Paul Sammut, James Willans “Applied
Metamodelling A Foundation for Language Driven Development,
@Xactium, 2004.

[5] Stephen J.Mellor, Kendall Scot, Axel Uhl, Dirk Weise “MDA Destilled:
Principles of Model/Driven Architecture”, Addison Wesley, March 03
2004, ISBN: 0-201-78891-8

[6] Preiss, O. “:Foundations of Systems and Properties: Methodological
Support for Modeling Properties of Software-Intensive
Systems” (Doctoral dissertation, University of Colorado). (2004).

[7] Kleppe, A. G., Warmer, J., Bast, W., “Explained, M. D. A. The model
driven architecture: practice and promise.” (2003).

[8] Marjan Mernik, Jan Heering, Anthonz M. Sloane, “When and How to
Develop Domain-Specific Language”s, ACM Computing Surveys, Vol.
37, No. 4, December 2005, pp. 316–344.

[9] Mellor,S.J. at.all. “MDA distilled: principles of model-driven
architecture.” Addison-Wesley Professional, 2004

[10] Markus Voelter, "From Programming To Modeling – and back again"
http://voelter.de/data/articles/FromProgrammingToModeling-1.2-
final.pdf, DOI: 10.2298/CSIS110112010P

[11] Micha l Antkiewicz and Krzysztof Czarnecki, Framework-Specific
Modeling Languages with Round-Trip Engineering

[12] OMG: UML 2.0 Super Structure Specification. http://www.omg.org/cgi-
bin/doc?ptc/2004-10-02

[13] Mellor, S.J., Balcer, M.J.: Executable UML: A Foundation for Model
Driven Architecture. Addison Wesley Professional, 2002

[14] Eclipse Foundation: Eclipse. http://www.eclipse.org/ (2006)

[15] Chriss Raistrick, Paul Francis, John Wright, Colin Carter, Ian Wilkie
“Model Driven Architecture with Executable UML”

[16] Object Management Group, UML 2.0 Superstructure Final Adopted
specification, ptc/03- 08-02, August 2003.

[17] MentorGraphics,BridgePointDevelopmentSuite,http://www.mentor.com/
products/embed-ded_software/nucleus_modeling/index.cfm, 2007.

[18] Kennedy Carter: Executable UML (xUML),
http://www.kc.com/xuml.php, 2007.

[19] Luz, M.P., da Silva, A.R.: Executing UML Models. 3rd Workshop in
Software Model Engineering (WiSME 2004), IEEE Computer Society,
Lisbon, Portugal, (2004)

[20] Gery, E., Harel, D., Palachi, E.: Rhapsody: A Complete Life-Cycle
Model-Based Development System. In: Third International Conference
on Integrated Formal Methods (IFM)(2002)

[21] [A18] Stephen J. Mellor. Agile mda. Technical report, Project
Technology, Inc., 2005.

[22] Scott W. Ambler. Agile Model Driven Development (AMDD).

[23] Kent Beck. Test-Driven Development By Example. Addison Wesley,
2002.

[24] Object Management Group. MDA Guide Version
1.0.1.http://www.omg.org/docs/omg/03-06-01.pdf, 2003.

[25] Susumu Hayashi et al. “Test driven development of uml models with
smart modeling system.” In Lecture Notes in Computer Science, volume
3273, pages 395{409, 2004.

[26] http://www.agilemodeling.com/essays/amdd.htm, 2007.

[27] Zef Hemel, Lennart C. L. Kats, Danny M. Groenewegen, Eelco Visser
“Code generation by model transformation: a case study in
transformation modularity”, Softw Syst Model (2010) 9:375–402, DOI
10.1007/s10270-009-0136-1

[28] Kats, L.C.L., Kalleberg, K.T., Visser, E.: “Domain-specific
languages for composable editor plugins.” In: Ekman, T., Vinju,
J.,(eds.) Proceedings of the Ninth Workshop on Language
Descriptions, Tools, and Applications (LDTA 2009), Electronic
Notes in Theoretical Computer Science. Elsevier, Amsterdam, 2009

[29] Kelly, S., Tolvanen, J.-P.: “Domain-Specific Modeling. Enabling
Full Code Generation.” Wiley, New York (2008)

[30] D. Spinellis, “Notable Design Patterns for Domain Specific Languages,”
J. Systems and Software, vol. 56, no. 1, 2001, pp. 91–99.

[31] T. Stahl, M. Völter, "Model-Driven Software Development:Tehnology,
Engineering, Management", John Wiley & Sons, Ltd.2006.

[32] Gordana Milosavljevic, "Improving Methods of Rapid Development of
Adaptive Business Information Systems", Doctoral dissertation, Novi
Sad, Faculty of Technical Sciences, Trg Dositeja Obradovića 6, 2010

[33] Branko Perisic, Gordana Milosavljevic, Igor Dejanovic, Branko
Milosavljevic,"UML Profile for Specifying User Interfaces of Business
Applications",ComSIS Vol. 8, No. 2, Special Issue, May 2011,pp. 405-
426

[34] I. Dejanović, „Metamodel, editor modela i generator poslovnih
aplikacija“, Magistarska teza, Fakultet tehničkih nauka, Novi Sad, 2008.

[35] I. Dejanović, G. Milosavljević, B. Perišić, M. Tumbas, “A Domain-
Specific Language for Defining Static Structure of Database
Applications“, Computer Science and Information Systems, Jun 2010.

[36] MIC Model Integrated Computing, Institute for Software Integrated
Systens, http://www.isis.vanderbilt.edu/research/MIC, accessed on
february 2014.

[37] Benoît Langlois, Consuela-Elena Jitia, Eric Jouenne, "DSL
Classification",

[38] David H. Lorenz. Boaz Rosenan," A Comparative Case Study of Code
Reuse With Language Oriented Programming", arXiv:1103.5901v1
[cs.SE] 30 Mar 2011

[39] Markus Voelter," Embedded Software Development with Projectional
Language Workbenches", Proceedings of MODELS 2010 and at
http://www.voelter.de/data/pub/Voelter

[40] [Men29]Indi Young, “Mental Models: Aligning Design Strategy with
Human Behavior”, Rosenfeld Media, LLC 705 Carroll Street, #2L
Brooklyn, New York 11215 USA,2008

