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Abstract— Exploitation of modern power systems requires 
prediction of the electrical load time series for operation of power 
utilities and load estimates for market operation and system 
planning. Increase of energy produced from renewable sources 
and deregulation of electrical energy market makes load 
prediction more important nowadays. By its nature, electrical 
load time series are highly non linear and require modeling in the 
complex domain. Therefore, neural network based models, with 
fully complex activation functions, are appropriate choice for 
prediction of electrical load time series. However, their 
performance can be affected by input data preprocessing. Due to 
that cause, the paper analyses influence of data preprocessing on 
prediction of complex valued load time series. The analysis is 
performed on metered load data, that represents fifteen minutes 
average of active and reactive power, obtained from the medium 
voltage grid and with application of simple predictor structures, 
i.e. neural adaptive filters, applied to the one step ahead 
prediction tasks. 
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I.  INTRODUCTION  
Deregulation of energy market, as well as increase of 

amount of energy obtained from renewable sources, imposes 
electrical load prediction as a necessity, in everyday operation 
of the key players on the market [1]. Electrical load time series 
are highly non linear, non stationary, and complex valued. 
Therefore, neural network (NN) based models are appropriate 
solution for the task of electrical load prediction [2]-[4]. 
Further, in order to reflect complex nature of electrical load 
time series, NN should employ fully complex (FC) activation 
function (AF) at a neuron [5]-[7]. Usual choice for the FC AF, 
within an NN based model, are meromorphic functions, i.e. 
functions analytic everywhere, except on a discrete subset of 
the set of complex numbers, C [8]. Thus, FC AF can facilitate 
gradient descent learning [9],[8].  Performance of the NN 
based models is dominantly determined by the size and 
structure of the training set, learning algorithm, and structure of 
the model [10]. Operation of a gradient descent learning 
algorithm, which provides simple organization of the model 
weights update, is dominantly determined by the value of the 
learning rate parameter and persistency of excitation (PE). If an 
input signal is PE of low order, then optimal value of weights 
will not be reached through the learning process [11],[12]. 

Another problem, regarding the task of time series prediction, 
is non stationary character of time series at hand or existence of 
certain trend within the time series [13],[14]. These will result 
in change of optimal value of weights and might slow down the 
learning process, or decrease its overall performance. 
Therefore, input data should be processed prior they enter the 
learning process. Input data preprocessing should provide 
higher order PE, avoid saturation of neurons, and try to 
eliminate trends, if any is present in the time series. However, 
data preprocessing techniques should take into account the fact 
that electrical load signal is complex valued, so its phase angle, 
also, carries certain amount of information on the process of 
electrical energy consumption. Neural adaptive filters, due to 
their simple structure and gradient descent learning algorithms, 
are good tool for time series analysis [15],[7],[8]. Therefore, 
they will be applied in order to analyze different data 
preprocessing techniques. 

The paper is organized as follows. The second Section 
provides an overview of AF, FC and real valued, as well as 
some of the standard data preprocessing techniques. The third 
Section gives principles of operation of neural adaptive filters, 
i.e. their structure and some gradient descent learning 
algorithms. The fourth Section contains experimental analysis 
of different data processing techniques. The experiments are 
performed as one step ahead prediction of the metered values 
of active and reactive power, obtained from the medium 
voltage grid. The conclusions are given in the fifth Section. 

II. ACTIVATION FUNCTIONS AND DATA PREPROCESSING 
Standard choice for a real valued AF at the neuron, within 

NN or neural adaptive filters are sigmoid functions. They have 
some nice properties, i.e. they are differentiable and bounded 
[16],[10]. As an example, we shall consider logistic AF, given 
by 

 

1( ) ,
1 exp( )

x
xβ

Φ =
+ −            (1) 

where β denotes the slope of the AF, Φ(•) denotes AF of 
the output neuron, and x is a variable. Real valued logistic AF, 
for different values of β is presented on Fig. 1. Absolute value 
of a complex valued logistic activation function, for β = 1, is 
presented on the Fig.2, while its phase angle is given on the 
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Fig.3. Having in mind that real valued logistic AF is bounded, 
the first type of data preprocessing is scaling of data so they 
can fit the range of the AF. Usual choice for data scaling is 
given by 

 

min

max min
,s

x x
x p q

x x
−

= +
−            (2) 

where xs denotes new, i.e. scaled data, xmin is minimum 
value of the original time series, xmax is maximum value of the 
original 
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Figure 1. Real valued logistic activation function for different values of the 
slope parameter 

time series, while real numbers p and q defines the range of 
new data in a way xs ∈ [q, q+p]. With proper choice of p and q, 
one can achieve an adequate order of PE and avoid saturation 
of the neurons. Saturation of the neurons will slow down or 
stop the learning process [17]. From the Fig. 2 it is obvious that 
complex valued logistic function is not bounded, but with 
certain activation, neuron with this AF will go to saturation. To 
avoid this situation, input data should be preprocessed prior to 
the learning process. If one tries to apply (2) to solve the 
problem, he will face the following obstacles. Firstly, set of 
complex numbers is not an ordered set, thus xmin and xmax do not 
have meaning within the set of complex numbers. The second, 
complex logistic AF does not have clearly defined range, so 
data transformation can target two issues, i.e. the PE of an 
input signal and saturation of the neuron. The third issue, 
regarding the application of (2) on complex valued time series, 
is preservation of the phase angle. Thus, one can use signal 
scaling, given by the following equation 

 

,
maxs

x

xx K
x

=

            (3) 

where |•| denotes the absolute value. Even though it is 
simple, transformation given by (3)  preserves phase angle, and 
by proper choice of the real number K, the PE can be increased, 
thus improving the learning process. Removal of a trend, 
present in the time series, cannot be achieved neither by (2) nor 
by (3). A simple way to remove the trend from the time series 

is differentiation of the time series, i.e. generation of the new 
time series as follows 
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Figure 2. Absolute value of the complex valued logistic activation function for 
β = 1 
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Figure 3. Phase angle of the complex valued logistic activation 
function for β = 1 

 ( ) ( ) ( ) ( 1),dx k x k x k x k= Δ = − −            (4) 

where k denotes the discrete time instant, Δ denotes the 
differentiation operator, and xd denotes new time series, the 
time series without the trend. Obviously, the new time series xd 
should be modified by (3), before it enters the learning process. 

III. NEURAL ADAPTIVE FILTERS 
The structure of a finite impulse response (FIR) complex 

valued neural adaptive filter is given on the Fig. 4. Equations 
that describe operation of the filter are as follow 

 ( ) ( ( )),y k net k= Φ            (5) 
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 ( ) ( ) ( ),Tnet k k k= x w            (6) 

where y(k) denotes the filter output, , net(k) is activation of 
the neuron, N is the length of filter tap inputs, w(k)=[w1(k), 
w2(k),…, wN(k)]T is the filter weight vector, (•)T denotes vector 
transpose and x(k)=[x1(k), x2(k),…, xN(k)]T is the filter input  

 

Figure 4. A neural adaptive complex valued FIR filter 

vector, where xi(k)= x(k-i), i=1,2,…,N. For the filter, given 
on the Fig. 4, a stochastic gradient descent learning algorithm 
is described by the following equations [6],[15] 

 ( 1) ( ) ( ),k k J kμ+ = − ∇ww w            (7) 

 
21( ) ( ) ,

2
J k e k=

               (8) 

 ( ) ( ) ( ),e k d k y k= −            (9) 

where μ denotes the learning rate, J(k) is the cost function, 
∇w(•) denotes gradient of a scalar function with respect to the 
weight vector w, e(k) is the error at the output neuron and d(k) 
is some desired, i.e. teaching signal. Computation of the 
gradient ∇w J(k) is not trivial, due to the fact that the cost 
function is not complex analytic [18], [19],[20]. In the case Φ 
is a meromorphic function [8], computation of the gradient of 
the cost function (8) gives [8], [19]. 
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where j=√-1, wr=ℜ( w), wi =ℑ( w), e(k) = ℜ (e(k)) + 
jℑ(e(k)) = e(k) + jei(k), and where for convenience Φ’*(net(k)) 
= Φ’*(k). Further, (•)’ denotes the first derivative and (•)* 
denotes the complex conjugate. Now, from (7) and (10) we 
have the weight update equation for the complex nonlinear 
gradient descent (CNGD) algorithm 

 ( 1) ( ) ( ) ( ) ( ).k k e k k kμ ∗ ∗′+ = + Φw w x         (11) 

In a normalized stochastic gradient learning algorithm, the 
learning rate μ is not constant. The learning rate, which yields 
the normalized complex nonlinear gradient descent (NCNGD) 
algorithm has the learning rate μNCNGD (k) =η/ (C+|Φ’ (k) |2||x 
(k) ||22). It is optimal in the sense that it minimizes the value of 
the a posteriori error [6], [8], [15] d (k)-Φ(xT (k) w (k+1)). The 
NCNGD algorithm robust on the value of its design parameters 
[17], thus it is a natural choice when it comes to application of 
neural adaptive filters on the problem of hypothesis testing [7]. 

IV. EXPERIMENTAL ANALYSIS 
The experiments were carried out, as one step ahead signal 
prediction, in order to compare different data preprocessing 
techniques. The test complex valued electrical load signal is 
shown on the Fig. 5 and the Fig. 6. 

The signal represents fifteen minutes average of active and 
reactive power, metered at the 10 kV feeder, in the 
Transformer station Banja Luka 2.The complex valued logistic 
AF was used within the experiments as nonlinearity at the 
neuron, with the slope β  
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Figure 5. Real part of the test signal 
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Figure 6. Imaginary part of the test signal 

= 4. In all the experiments the NCNGD algorithm was applied, 
with the learning rate parameter μ=0.1 and C=0.1.  

The performance measure was standard prediction gain 
Rp=10log10 (σy

2/σe
2), where σy

2 and σe
2 denote variances of the 

predicted signal and the output error, respectively. Value of the 
coefficient K was varied from 0.1 up to 4, with the step 0.1. 
Order of the neural adaptive filter was from the set N = {10, 
20, 30, 40, 50}. In the first experiment, the test signal was 
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scaled according to (3). Summary of the first experiment is 
given on the Fig. 7. In the second experiment, data 
preprocessing was performed according to (4) and (3). Results 
of the second experiment are summarized in the Fig. 8. From 
the Fig. 7 it is obvious that each performance curve has a 
unique maximum. The maximum is achieved for certain K = 
Kmax, and 1 <  Kmax < 1.5.  
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Figure 7. Results of the first experiment 
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Figure 8. Results of the second experiment 

For the K  <  Kmax input data does not have sufficient PE, 
therefore learning process cannot yield optimal value of the 
filter weights. In the case K  >  Kmax learning algorithm forces 
the output neuron to saturation, thus the learning process is too 
slow and cannot yield the optimal filter weights. Results of the 
second experiment reveal the same shape of the performance 
curves, as in the first experiment, i.e. the same line of reasoning 
holds. Significantly lower values of the performance indices in 
the second experiment, comparing to the results of the first 
experiment, means that data preprocessing according to (4) 
extracts certain amount of information, thus reducing capability 
of the learning process. 

V. CONCLUSIONS 
Performance analysis of some simple data preprocessing 

techniques, for application in one step ahead complex valued 
load prediction tasks, has been given. Data preprocessing is 
very important step in the design procedure of every NN based 
model for complex valued electrical load prediction. Neural 
adaptive FIR filters, with the NCNGD algorithm, have been 
employed in order to assess performance of these techniques. 
Simple scaling of an input signal, which preserves phase angle, 
has shown good performance. With one free parameter, it can 
improve, to some extent, PE of an input signal, while avoiding 
saturation of the neuron. Differentiation of an input signal, as a 
tool for the trend removal, has shown poor performance. 
Further research has to be done, in order to find adequate 
modification of the basic procedure. 
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