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Abstract— Effort estimation is one of the critical challenges in 
Software Testing Life Cycle (STLC). It is the basis for the 
project’s effort estimation, planning, scheduling and budget 
planning. This paper illustrates few models with an objective 
to depict the accuracy and bias variation of an organization’s 
estimates of software testing effort using two historical datasets 
of 50 finished software projects. In this research, a statistical 
study is performed. A multiple regression analysis model has 
been built to predict the Testing Time Effort for software 
development projects based on several Independent or 
Predictor variables. The independent variables under 
consideration are: total number of test cases created per 
module, experience of the developer of the module in years, 
experience of the tester in years and the size of the module. 
Besides, the software documentation size (#Pages of 
requirements, design, project plans, test plans, requirements 
changes, training materials, HELP text, and user manuals) was 
selected and used for the software testing effort estimation. The 
proposed models’ estimation figures are accurate enough to be 
appropriate techniques for estimating effort for software 
testing. 
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I. INTRODUCTION 
Software Testing is an important process of software 

development which is performed to support and enhance 
reliability and quality of the software. It consists of 
estimating testing effort, selecting suitable test team, 
designing test cases, executing the software with those test 
cases and examining the results produced by those 
executions. Test Estimation is the estimation of the testing 
size, effort and schedule for a specified software project in a 
specified environment using defined methods, tools and 
techniques. Studies indicate that 40-50 percent of the cost of 
software development is devoted to testing, with the 
percentage for testing critical software being even higher. 
Today many approaches are available to estimate the overall 
software size and effort, however there is a lack of 
structured and scientific methods for estimating software 
testing size and effort [1,2]. One of the most well-known 
overall software size and effort estimation model is cost and 
quality estimation model COnstructive QUALity MOdel 
(COQUALMO) [5] which is an extension to the 
COnstructive COst MOdel (COCOMO) [4]. The COCOMO 
is an algorithmic software cost estimation model uses a 
basic regression formula, with parameters that are derived 
from historical project data and current project 

characteristics. Some of the techniques used for estimating 
test effort range from percentage of the development effort 
to more refined approaches based on Use Case and Function 
Point (FP) - depending on functional and technological 
complexity[1,2,7,10] . 
Some of the commonly used test estimation techniques are: 
1) Use of Development Size estimates - Source Lines of 

Code (SLOC), use case, function points 
2) Experience Based - Analogies and experts: rule of 

thumb 
3) A percentage of development effort  
4) Risk-based methods - determine what to test and how 

much 
5) Use of Historical Data + Parametric model design 
6) Work breakdown structure – WBS method 

To ensure project/program success, increase overall 
product quality and improve time to market, it is an 
imperative that the approach to estimating software test 
effort is as accurate as possible. 

Data from few large projects was collected, although 
different metrics were used for the two projects. A multi 
linear model was used, which was reduced by factor analysis 
to remove some of the metrics that were linearly related to 
one another. Application of a stepwise multilinear regression 
technique selected independent variables from the metrics 
that remained to determine the coefficients for the equation 
which represents the Testing Time Effort model (TTEM) for 
Software Development and Software Testing Life Cycle. 

The independent variables under consideration are: total 
number of test cases created per module, experience of the 
developer of the module in years, experience of the tester in 
years and the size of the module. Besides, the software 
documentation size (#Pages of requirements, design, project 
plans, test plans, requirements changes, training materials, 
HELP text, and user manuals) was selected and used for the 
software testing effort estimation. The proposed models’ 
estimation figures are typical of those studies using 
regression analysis – the 'goodness of fit' may be reasonable 
and accurate enough to be appropriate techniques for 
estimating effort for software testing [6,7,10]. 

II. SOFTWARE TESTING EFFORT MODEL   
A. Parametric Modeling Process 

Parametric modeling is a statistical technique whereby a 
dependent variable is estimated based on the values of and 
the relationships between the independent variable(s). The 
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nature of the dependent variable can vary greatly based on 
one’s domain of interest. 

Software development environment consists of series of 
phases [2,7] and in all the phases of Software Development 
Life Cycle (SDLC) software testing is one of the major 
phases. As such software testing is the process of validation 
and verification of the software product. Effective software 
testing will contribute to the delivery of reliable and quality 
oriented software product, more satisfied users, lower 
maintenance cost, and more accurate and reliable result in 
day to day working environment of software professionals. 

In this paper, we discuss the use of parametric modeling 
for Estimating Software Testing Effort and present a nine 
step parametric modeling process, adopted from  [11]. 

The overall purpose of parametric models is to make an 
estimation or prediction based on current information. In the 
general sense, a function y = f(x1, x2, x3, …) is created such 
that xi is an input to the function and y is the variable being 
estimated. Some examples of the types of relationships in 
parametric modeling are [4,5]: 
• Analogy: Outcome = f(previous outcome, difference) – 
used to make a prediction based on what happened before 
and then taking into account the differences in the scenario. 
Examples: development time prediction; traffic patterns. 
• Unit Cost: Outcome = f(unit costs, unit quantities) – used 
to make a prediction based on known production values. 
Examples: potential profit based on software units available 
to be sold. 
• Activity-Based: Outcome = f(activity levels, duration) – 
used to make a prediction based on time spent performing a 
specified activity. Examples: training personnel costs. 
• Relationship-Based: Outcome = f(parametric relationships) 
– used to make a prediction based on the relations and 
interactions of inter-dependent variables. Examples: 
predicting defects introduction based on software complexity, 
technology used, and team performances; software size/cost 
models. 
Parametric models may be calibrated for use in a particular 
situation, organization, or even particular project. 

B.  Proposed Approach for Estimating Software 
Testing Effort 

In this section, we present the nine-step process, adopted 
from  [11], for parametric modeling, as shown in Figure 1. 
The steps are shown in a general waterfall order. However, 
feedback and concurrency between steps can and should 
occur, as the dashed arrows indicate. 

Hence, software testing is a necessary and important 
activity of software development process. However, it 
affects overall software life cycle, because quality of 
software life cycle depend upon testing technique 
demanding adequate test case preparation, modeling, and 
documentation which make the process complicated and 
challenging. These impending challenges have to be 
addressed by researchers and practitioners working closely 

together by estimating the amount of effort that is required 
to develop user-friendly software [10]. 
 

 
Fig.1 Parametric Modeling Process for Software Engineering [11] 

An effective metrics program [8] must be tightly coupled to 
the software development process. The metrics program and 
the development process are mutually supportive. It is 
essential for test professionals to know how their testing 
project is progressing and what the quality of the product 
they are testing is.  

Metrics & Measurements is a key aspect in both project 
and test management. Gone are those days when metrics 
was considered a CMM&TMM Level-4 or Level-5 
requirement in the quality Levels journey that is to say, only 
matured companies need to follow metrics. Metrics have 
become the backbone of every organization and have 
become a de-facto requirement for periodical project 
reviews of all companies now. The metrics program, by 
adding quantitative measurement (Number of  Use cases, 
Number of Test cases, Tester Years of experience, 
Developer Years of experience, Testing Time Effort in 
Days) [1,7,8], makes the development process more visible 
and understandable to the software development managers 
and team. At the same time, the development process 
defines integral points of data collection in support of the 
metrics program.  

The software development process is made up of phases. 
For our purposes, the development process (W-model) will 
be divided into four phases: 1. Requirements (software 
systems engineering); 2. Design (analysis models and 
designs); 3. Implementation (coding, unit testing, subsystem 
testing) and 4. Testing (integration testing, system testing, 
acceptance testing). Within each of these phases, unique 
development products are produced, like, source lines of 
code, Number of Pages produced for: requirements, design, 
project plans, test plans, requirements changes, training 
materials, HELP text, and user manuals. Collected data is 
statistically analyzed and their actual production time 
efforts, average values, standard deviation etc. are 
calculated. Jones [2] estimated the number of test cases 
which can be determined by the function point’s estimate 
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for the corresponding effort. The actual effort in person-
hours was then calculated with a conversion factor obtained 
from previous project data. The main disadvantage of using 
function points is that they require detailed requirements in 
advance. In another study on Test Point Analysis, a method 
for estimating the effort has been emphasized to perform all 
functional test activities based on use case points [9]. This 
model estimates the effort required for all test activities 
together, such as defining, implementing and executing all 
the tests. 

III.  EMPIRICAL METHOD 
This section will present our empirical method of 
establishing Testing Time Effort (TTE) estimation model 
for testing process. The two phases of the method are to: (1) 
identify the STLC objectives to be managed quantitatively 
and construct data samples from which initial linear 
regression estimation model will be designed; (2) establish 
new TTE estimation model according testing process 
artifacts performance baseline for the identified metrics and 
cross validate all models using new dataset. 

A. Building TTE Regression Models  
This research is driven towards achieving several objectives 
as follows: 
• To analyse existing metrics, techniques and approaches 
used in building prediction model for TTE 
• To formulate prediction model for TTE using statistical 
approach based on metrics in software testing process 
• To evaluate the accuracy of proposed prediction model 
based on acceptable criteria for final selection of defect 
prediction model for TTE 

This section describes the model-building strategies that 
were used for predicting Testing Time Effort. Multiple 
linear regression (MLR) analysis was used to model the 
relationship between quality, testing and software metrics 
[1,8] based on two data samples: Dataset_1 and Dataset_2. 
In the first phase we used collected metrics of a large project 
(Dataset_1, Table I) consisting on 31 module (component) 
to preliminary build few candidates of TTE regression 
model. There are many variables that define a software 
development project. These authors have extensive 
experience in the area of software development and 
software quality. Based on that experience and after 
analyzing literature on testing effort estimation, we selected 
four independent variables-metrics X1 (Number of  Use 
cases), X2 (Tester Years of experience), X3 (Developer 
Years of experience) and X4 (Number of Test cases). In our 
work, the dependent variable that is to be measured is the 
TTE i.e.Y [Day] and the independent variables are the 
metrics presented in Table I. 

We applied Surface Response Modeling (SRM) method, 
a case of Design of Experiment (DOE) method in MINITAB 
ver.16 statistical software tool (see Fig. 2, MINITAB 16 
screenshots) in order to find regression equation for Y as 
functions of  X1,X2,X3 and X4 in the form: 

∑ ∑
= ≠

++=
n

i

n

ji
jiijii XXbXbbY

1 1,
0

                (1) 

where : Y - is the estimated (dependent) output variable i.e. 
TTE i.e.Y [Day] in our case, n - number of independent 
variables-metrics (4 in our case), b0 , bi – linear regression 
coefficients without variable interaction, bij – variable 
interaction regression coefficients, and Xi  – real ith metrics 
values in the experiment.  

 
TABLE I.  HISTORICAL METRICS DATASET_1 

FROM LARGE SOFTWARE PROJECT 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Further, the model building strategies have the following 
associated factors to compare TTE estimation models 
characteristics of the goodness: 

 
Modu-

les 

Y 
 

TTE 
[Day] 

  X1 
#Use 
cases 

     X2 
#Tester 
Years of 

experience 

    X3 
#Developer 

Years of 
experience 

  X4 
#Test 
cases 

Mod.1 48.29 3 4 9 31 
Mod.2 66.04 17 3 6 18 
Mod.3 58.35 12 3 11 38 
Mod.4 36.00 3 6 6 4 
Mod.5 39.82 5 7 13 30 
Mod.6 31.19 13 6 6 15 
Mod.7 6.92 11 4 15 9 
Mod.8 40.66 8 3 8 53 
Mod.9 15.30 3 1 9 12 
Mod.10 20.73 2 4 8 11 
Mod.11 75.36 16 1 8 41 
Mod.12 17.30 3 6 9 18 
Mod.13 55.16 7 4 8 44 
Mod.14 170.19 41 6 11 89 
Mod.15 340.29 63 4 13 260 
Mod.16 193.23 7 6 13 55 
Mod.17 34.43 2 6 6 7 
Mod.18 91.62 10 6 6 30 
Mod.19 5.40 7 4 8 16 
Mod.20 22.17 9 8 6 54 
Mod.21 38.91 7 6 5 29 
Mod.22 38.51 29 4 8 48 
Mod.23 35.98 7 8 21 21 
Mod.24 118.82 19 6 6 60 
Mod.25 45.23 7 3 6 48 
Mod.26 45.41 12 6 9 72 
Mod.27 37.69 15 4 8 66 
Mod.28 37.01 10 6 6 14 
Mod.29 41.62 3 5 6 12 
Mod.30 43.93 9 4 6 8 
Mod.31 128.48 35 3.6 7.75 136 
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• The coefficient of determination, R2 - it is the amount of 
variation explained by the regression equation which is used 
to predict future outcomes on the basis of other related 
information. It is a statistical term saying how good the 
particular generated equation is at predicting functional 
defects. R-Sq. value must be above 50%.  
• The F-ratio is used to test the hypothesis that all regression 
coefficients are zero at statistically significant levels. 
• Where parametric testing is appropriate, a significance 
level of α = 0.05 was adopted for statistical inference. For 
example, all interval estimates are reported using confidence 
level 95%. 

Large deviations in size estimation area require model 
performance comparison using some heuristic rejection 
rules that compare more than just mean performance data 
[12]. The results for each validated method were compared 
using each treatment of MMRE, SDMRE, and larger R2 

correlation. MMRE comes from the mean magnitude of the 
relative error, or MRE, the absolute value of the relative 
error: 

actualactualpredictedMRE /−=        (2) 
The mean magnitude of the relative error, or MMRE, is the 
average percentage of the absolute values of the relative 
errors over an entire data set. Given n tests (estimators), the 
MMRE is: 

∑
−

=
n

i i

ii

actual
actualpredicted

n
MMRE 100              (3) 

The standard deviation, or SDMRE, is root mean square of 
MRE. Given a n tests (estimators), the SDMRE is: 

∑ −=
n

i
iMRE MMREMRE

T
SD 2/1)(100      (4)  

!

! !
 

 Fig. 2 DOE->SRM MINITAB ver.16 statistical software screenshots 
!

The initial linear regression model was built using DOE       
-> SRM options in MINITAB ver.16 statistical software, 

without X1, X2, X3, X4 independent variables interaction to 
estimate test effort Y [Day], as the dependent variable, using 
the proposed metrics values from Table I. Then we 
developed linear regression model, with independent 
variables interaction, to estimate test effort Y [Day] using 
all the proposed metrics values from Table I. All regression 
model candidates are expressed with equation (5) to (8). 

 X4*0.3498+ X3*0.367-
 X2*0.775  -X1*0.50712+ 16.237=Y[Day]        (5) 

 

 X4*X3*0.273 -  X4*X2*0.074- 
X3*X2*0.364+ X4*X1*0.015- X3*X1*0.707-

 X2*X1*0.72+ X4*1.776- X3*0.478
- X2*0.376- X1*4.606+22.962=Y[Day]

  (6) 

 

X4 *0.8773=Y[Day]           (7)
  

X4 *0.4341=Y[Day]                        (8) 
 

In second phase new regression models candidates were 
designed and cross validated, as well as previous TTE 
models designed in the first phase, using new Dataset_2 
presented in Table II, which is adapted from published work 
[3]. As for the type of software which data is collected, it 
comprises of web-based and component-based developed in 
Java, PHP or Hypertext Preprocessor and .NET. During this 
phase, further refinement is done to the previous equations. 
Realizing the need to generate prediction model that is both 
practical and makes sense from the software engineering 
practitioners, the predictors have been revised so that only 
logical predictors selected by filtering metrics that contain 
only valid data and reducing the model in order to have 
logical correlation with TTE. 
 

TABLE II.   DATASET_2 FROM 14 
PROJECTS 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Project 

Y 
TTE  
[Day] 

X4 
#Test 
cases 

     X5 
Size  

[KLOC] 

    X6 
#Requir. 
 Pages 

  X7 
#Design 
Pages 

A 16.79 224 28.8 81 121 
B 45.69 17 6.8 171 14 
C 13.44 24 5.4 23 42 
D 4.9 25 1.1 23 42 
E 4.72 28 1.2 23 54 
F 32.69 88 6.8 20 70 
G 64 149 4 38 131 
H 5.63 24 0.2 26 26 
I 9.13 13 1.4 15 28 
J 89.42 306 36 57 156 
K 17 142 12.3 162 384 
L 8.86 40 3.8 35 33 
M 30.99 151 26.1 88 211 
N 41.13 157 24.2 102 11 
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Note, please, that we included in Dataset_2 new software 
metrics for independent variables X5 (software Size in 
KLOC), X6 (#Requirement document Pages) and X7 
(#Design documents Pages), as well, old X4 (#Test cases) in 
order to ivestigate their influence on Testing Time Effort 
i.e.Y [Day] estimation model for all 14 projects presented in 
Table II. All regression model candidates are expressed with 
equation (9) and (10) formed by the Dataset_2. 
 

X7*0.1261  - X6*0.1852
 + X5*1.633- X4*0.4341+ 3.3448=Y[Day]        (9)

        

X7*0.1261-X4*0.4341=Y[Day]        (10) 

!

We did small investigation to build TTE estimation model 
based on Work breakdown structure – WBS method i.e. 
WBS using software artifacts: documentation and  program 
SLOC produced in SDLC and STLC. 
We propose for software artifacts:  #Requir.  Pages, #Design 
Pages and estimated [1,2,4,7] application Size [KLOC], 
according to good estimation accuracy of the regression 
model based on independent variables X4, X5 (Size 
[KLOC]), and X6 (#Requirement document Pages) and X7 
(#Design documents Pages) in Dataset_2. Using mentioned 
software artefacts we build  new test effort estimation 
model: 

∑
=

N

1P

TTA) TTE(Phase=Y[Day]            (11) 

Where, N=6 phases, TTE(Phase TTA) - is average (norm, 
standard) effort rate to test developed (produced) software 
artifacts (TTA -Testing Time of Artifacts) in phase P=1, 2, 
3…6. For average (norm, standard) testing time rate we 
used data from literature survey done by Wagner [13]. 
For development Phase:   
P=1, average rate to test Requirements is 8 Pages/Day, and 
TTE(Req.) = #Req. Pages / 8 ;  
P=2, average rate to test Design documents is 30 Pages/Day, 
and TTE(Des.) = #Des. Pages / 30;  
P=3, average rate to test program code is 600 LOC/Day, and 
TTE(Size[KLOC]) = 0.6 Size(KLOC); 
P=4, average rate to test program module (UT - Unit test) is 
309.3  LOC/Day, and TTE(UT) = 0.3093 Size(KLOC); 
P=5, average rate to test software application during 
integration phase (IT) is 185.6  LOC/Day, and TTE(IT) = 0. 
1856 Size(KLOC); 
P=6, average rate to test software system (ST) is 154.6  
LOC/Day, and TTE(IT) = 0. 1546 Size(KLOC); 
 
Finally, practical WBS based TTE model is expressed in a 
form: 

)(2495.1
30
.#

8
Re=Y[Day] KLOCSizePagesDesq.Pages#

++  (12) 

 Table III provides an overview of the accuracy of 7 
proposed testing effort estimation models. In the first 
column coded name TTEMn Di_Vk (n is model number, 
i=1 or 2, k=1 or 2) for TTE model is given, where D1 or D2 
means that TTE model is designed using Dataset_1 or 

Dataset_2 and V1 or V2 means which dataset (Dataset_1 or 
Dataset_2 ) is used for model verification. In the second 
column, a list of independent variables used in TTE model 
is given. In the third column we provided equation number 
for TTE calculation, and  in 4, 5 and 6 column, data for R2, 
MRE and SDMRE are presented. 
One can observe from this table that TTEM3 D1_V1, 
TTEM6 D2_V2, and TTEM7 D2_V2 provides best 
estimation accuracy: MMRE and SDMRE < 50%. 
 

TABLE III.  TESTING TIME EFFORT (TTE) 
ESTIMATION MODEL ACCURACY 
COMPERISON 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

I. CONCLUSIONS AND NEXT STEPS 
It has been clearly demonstrated that regression analysis has 
been successfully applied to formulate a effort prediction 
model for software testing process. By using statistical 
approach such as regression analysis, the research can justify 
the reasons and significance of metrics: Number of  Use 
cases, Tester Years of experience, Developer Years of 
experience, Number of Test cases, software Size in KLOC, 
#Requirement document Pages and #Design documents 
Pages, from requirement, design and coding phase in 
predicting Testing Time Effort.  

A number of multiple regression models were developed 
with various combinations and transformations of the 
independent variables. The models were then analyzed for 
their ability to accurately predict the dependent variable. 

In carrying out the research, the activities were subjected 
to several limitations. First, the research only produced two 
general models based on: Use of Historical Data + 
Parametric model design and Work breakdown structure – 

 
Model 
Name 

 
Independ. 
variables 

included in 
model 

 
Eq. 
No. 

  
R2     
 

 
MMRE 

 [%] 

 
SDMRE 

[%] 

TTEM1 
D1_V1 X1,X2,X3,X4 (5) 89.6 54.9 45.3 

TTEM2 
D1_V1 

X1,X2,X3,X4,
X1X2,X1X3,
X1X4,X2X3,

X3X4 

(6) 78.8 63.7 94.7 

TTEM3
D1_V1 X4 (7) 74.9 52.2 33.1 

TTEM3 
D1_V2 X4 (7) 74.9 240 164 

TTEM4 
D2_V2 X4 (8) 64.5 85.4 67 

TTEM4 
D2_V1 X4 (8) 64.5 65.7 22 

TTEM5 
D1_V1 X4,X5,X6,X7 (9) 64.5 63.1 51.2 

TTEM6
D1_V1 X7,X4 (10) 64.5 38 25 

TTEM7
D1_V1 X5,X6,X7 (12) - 47.1 44.8 
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WBS method, due to limited number of data points. Second, 
data collected is only limited to software development 
projects in which their metrics are rigorously collected and 
tracked. 

Projects that were not involved in metrics collection are 
no part of the data collected. Third limitation is that this 
research only focuses on V-shaped development model since 
that is the process model being adopted by the organization 
selected for this research. Fourth, data sets used in this 
research is a mix of metrics from web-based and component-
based software. Therefore, findings of the research are the 
final result of using metrics from both software types. 

More variants of the model could be developed by 
improving the model to predict test effort of projects with 
high number of intensive test activities (more than 6) 
including: non-functional test activities such as security 
testing, usability testings and performance testing. To 
achieve this, related metrics affecting these nonfunctional 
testing must be well defined, collected and tracked. It is 
hoped that the outcome of this research has been able to 
contribute and expand existing knowledge in software 
engineering estimation domain, particularly in the area of 
software testing, software quality management and software 
process planing. With the continuous effort in improving 
such prediction, more high quality software product can be 
developed in the future. 
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