
INFOTEH-JAHORINA Vol. 13, March 2014.

 - 637 -

Challenges in Estimating Software Testing Effort

Ljubomir Lazić, Ivan Đokić
State University of Novi Pazar

Vuka Karadžića bb
36 300 Novi Pazar, SERBIA

llazic@np.ac.rs, idjokic@np.ac.rs

Stevan Milinković
The School of Computing

Union University
Belgrade, Serbia

smilinkovic@raf.edu.rs

Abstract— Effort estimation is one of the critical challenges in
Software Testing Life Cycle (STLC). It is the basis for the
project’s effort estimation, planning, scheduling and budget
planning. This paper illustrates few models with an objective
to depict the accuracy and bias variation of an organization’s
estimates of software testing effort using two historical datasets
of 50 finished software projects. In this research, a statistical
study is performed. A multiple regression analysis model has
been built to predict the Testing Time Effort for software
development projects based on several Independent or
Predictor variables. The independent variables under
consideration are: total number of test cases created per
module, experience of the developer of the module in years,
experience of the tester in years and the size of the module.
Besides, the software documentation size (#Pages of
requirements, design, project plans, test plans, requirements
changes, training materials, HELP text, and user manuals) was
selected and used for the software testing effort estimation. The
proposed models’ estimation figures are accurate enough to be
appropriate techniques for estimating effort for software
testing.

Key words - software testing; testing effort estimation;
multiple regression analysis, estimation accuracy

I. INTRODUCTION
Software Testing is an important process of software

development which is performed to support and enhance
reliability and quality of the software. It consists of
estimating testing effort, selecting suitable test team,
designing test cases, executing the software with those test
cases and examining the results produced by those
executions. Test Estimation is the estimation of the testing
size, effort and schedule for a specified software project in a
specified environment using defined methods, tools and
techniques. Studies indicate that 40-50 percent of the cost of
software development is devoted to testing, with the
percentage for testing critical software being even higher.
Today many approaches are available to estimate the overall
software size and effort, however there is a lack of
structured and scientific methods for estimating software
testing size and effort [1,2]. One of the most well-known
overall software size and effort estimation model is cost and
quality estimation model COnstructive QUALity MOdel
(COQUALMO) [5] which is an extension to the
COnstructive COst MOdel (COCOMO) [4]. The COCOMO
is an algorithmic software cost estimation model uses a
basic regression formula, with parameters that are derived
from historical project data and current project

characteristics. Some of the techniques used for estimating
test effort range from percentage of the development effort
to more refined approaches based on Use Case and Function
Point (FP) - depending on functional and technological
complexity[1,2,7,10] .
Some of the commonly used test estimation techniques are:
1) Use of Development Size estimates - Source Lines of

Code (SLOC), use case, function points
2) Experience Based - Analogies and experts: rule of

thumb
3) A percentage of development effort
4) Risk-based methods - determine what to test and how

much
5) Use of Historical Data + Parametric model design
6) Work breakdown structure – WBS method

To ensure project/program success, increase overall
product quality and improve time to market, it is an
imperative that the approach to estimating software test
effort is as accurate as possible.

Data from few large projects was collected, although
different metrics were used for the two projects. A multi
linear model was used, which was reduced by factor analysis
to remove some of the metrics that were linearly related to
one another. Application of a stepwise multilinear regression
technique selected independent variables from the metrics
that remained to determine the coefficients for the equation
which represents the Testing Time Effort model (TTEM) for
Software Development and Software Testing Life Cycle.

The independent variables under consideration are: total
number of test cases created per module, experience of the
developer of the module in years, experience of the tester in
years and the size of the module. Besides, the software
documentation size (#Pages of requirements, design, project
plans, test plans, requirements changes, training materials,
HELP text, and user manuals) was selected and used for the
software testing effort estimation. The proposed models’
estimation figures are typical of those studies using
regression analysis – the 'goodness of fit' may be reasonable
and accurate enough to be appropriate techniques for
estimating effort for software testing [6,7,10].

II. SOFTWARE TESTING EFFORT MODEL
A. Parametric Modeling Process

Parametric modeling is a statistical technique whereby a
dependent variable is estimated based on the values of and
the relationships between the independent variable(s). The

 - 638 -

nature of the dependent variable can vary greatly based on
one’s domain of interest.

Software development environment consists of series of
phases [2,7] and in all the phases of Software Development
Life Cycle (SDLC) software testing is one of the major
phases. As such software testing is the process of validation
and verification of the software product. Effective software
testing will contribute to the delivery of reliable and quality
oriented software product, more satisfied users, lower
maintenance cost, and more accurate and reliable result in
day to day working environment of software professionals.

In this paper, we discuss the use of parametric modeling
for Estimating Software Testing Effort and present a nine
step parametric modeling process, adopted from [11].

The overall purpose of parametric models is to make an
estimation or prediction based on current information. In the
general sense, a function y = f(x1, x2, x3, …) is created such
that xi is an input to the function and y is the variable being
estimated. Some examples of the types of relationships in
parametric modeling are [4,5]:
• Analogy: Outcome = f(previous outcome, difference) –
used to make a prediction based on what happened before
and then taking into account the differences in the scenario.
Examples: development time prediction; traffic patterns.
• Unit Cost: Outcome = f(unit costs, unit quantities) – used
to make a prediction based on known production values.
Examples: potential profit based on software units available
to be sold.
• Activity-Based: Outcome = f(activity levels, duration) –
used to make a prediction based on time spent performing a
specified activity. Examples: training personnel costs.
• Relationship-Based: Outcome = f(parametric relationships)
– used to make a prediction based on the relations and
interactions of inter-dependent variables. Examples:
predicting defects introduction based on software complexity,
technology used, and team performances; software size/cost
models.
Parametric models may be calibrated for use in a particular
situation, organization, or even particular project.

B. Proposed Approach for Estimating Software
Testing Effort

In this section, we present the nine-step process, adopted
from [11], for parametric modeling, as shown in Figure 1.
The steps are shown in a general waterfall order. However,
feedback and concurrency between steps can and should
occur, as the dashed arrows indicate.

Hence, software testing is a necessary and important
activity of software development process. However, it
affects overall software life cycle, because quality of
software life cycle depend upon testing technique
demanding adequate test case preparation, modeling, and
documentation which make the process complicated and
challenging. These impending challenges have to be
addressed by researchers and practitioners working closely

together by estimating the amount of effort that is required
to develop user-friendly software [10].

Fig.1 Parametric Modeling Process for Software Engineering [11]

An effective metrics program [8] must be tightly coupled to
the software development process. The metrics program and
the development process are mutually supportive. It is
essential for test professionals to know how their testing
project is progressing and what the quality of the product
they are testing is.

Metrics & Measurements is a key aspect in both project
and test management. Gone are those days when metrics
was considered a CMM&TMM Level-4 or Level-5
requirement in the quality Levels journey that is to say, only
matured companies need to follow metrics. Metrics have
become the backbone of every organization and have
become a de-facto requirement for periodical project
reviews of all companies now. The metrics program, by
adding quantitative measurement (Number of Use cases,
Number of Test cases, Tester Years of experience,
Developer Years of experience, Testing Time Effort in
Days) [1,7,8], makes the development process more visible
and understandable to the software development managers
and team. At the same time, the development process
defines integral points of data collection in support of the
metrics program.

The software development process is made up of phases.
For our purposes, the development process (W-model) will
be divided into four phases: 1. Requirements (software
systems engineering); 2. Design (analysis models and
designs); 3. Implementation (coding, unit testing, subsystem
testing) and 4. Testing (integration testing, system testing,
acceptance testing). Within each of these phases, unique
development products are produced, like, source lines of
code, Number of Pages produced for: requirements, design,
project plans, test plans, requirements changes, training
materials, HELP text, and user manuals. Collected data is
statistically analyzed and their actual production time
efforts, average values, standard deviation etc. are
calculated. Jones [2] estimated the number of test cases
which can be determined by the function point’s estimate

 - 639 -

for the corresponding effort. The actual effort in person-
hours was then calculated with a conversion factor obtained
from previous project data. The main disadvantage of using
function points is that they require detailed requirements in
advance. In another study on Test Point Analysis, a method
for estimating the effort has been emphasized to perform all
functional test activities based on use case points [9]. This
model estimates the effort required for all test activities
together, such as defining, implementing and executing all
the tests.

III. EMPIRICAL METHOD
This section will present our empirical method of
establishing Testing Time Effort (TTE) estimation model
for testing process. The two phases of the method are to: (1)
identify the STLC objectives to be managed quantitatively
and construct data samples from which initial linear
regression estimation model will be designed; (2) establish
new TTE estimation model according testing process
artifacts performance baseline for the identified metrics and
cross validate all models using new dataset.

A. Building TTE Regression Models
This research is driven towards achieving several objectives
as follows:
• To analyse existing metrics, techniques and approaches
used in building prediction model for TTE
• To formulate prediction model for TTE using statistical
approach based on metrics in software testing process
• To evaluate the accuracy of proposed prediction model
based on acceptable criteria for final selection of defect
prediction model for TTE

This section describes the model-building strategies that
were used for predicting Testing Time Effort. Multiple
linear regression (MLR) analysis was used to model the
relationship between quality, testing and software metrics
[1,8] based on two data samples: Dataset_1 and Dataset_2.
In the first phase we used collected metrics of a large project
(Dataset_1, Table I) consisting on 31 module (component)
to preliminary build few candidates of TTE regression
model. There are many variables that define a software
development project. These authors have extensive
experience in the area of software development and
software quality. Based on that experience and after
analyzing literature on testing effort estimation, we selected
four independent variables-metrics X1 (Number of Use
cases), X2 (Tester Years of experience), X3 (Developer
Years of experience) and X4 (Number of Test cases). In our
work, the dependent variable that is to be measured is the
TTE i.e.Y [Day] and the independent variables are the
metrics presented in Table I.

We applied Surface Response Modeling (SRM) method,
a case of Design of Experiment (DOE) method in MINITAB
ver.16 statistical software tool (see Fig. 2, MINITAB 16
screenshots) in order to find regression equation for Y as
functions of X1,X2,X3 and X4 in the form:

∑ ∑
= ≠

++=
n

i

n

ji
jiijii XXbXbbY

1 1,
0

 (1)

where : Y - is the estimated (dependent) output variable i.e.
TTE i.e.Y [Day] in our case, n - number of independent
variables-metrics (4 in our case), b0 , bi – linear regression
coefficients without variable interaction, bij – variable
interaction regression coefficients, and Xi – real ith metrics
values in the experiment.

TABLE I. HISTORICAL METRICS DATASET_1

FROM LARGE SOFTWARE PROJECT

Further, the model building strategies have the following
associated factors to compare TTE estimation models
characteristics of the goodness:

Modu-

les

Y

TTE
[Day]

 X1
#Use
cases

 X2
#Tester
Years of

experience

 X3
#Developer

Years of
experience

 X4
#Test
cases

Mod.1 48.29 3 4 9 31
Mod.2 66.04 17 3 6 18
Mod.3 58.35 12 3 11 38
Mod.4 36.00 3 6 6 4
Mod.5 39.82 5 7 13 30
Mod.6 31.19 13 6 6 15
Mod.7 6.92 11 4 15 9
Mod.8 40.66 8 3 8 53
Mod.9 15.30 3 1 9 12
Mod.10 20.73 2 4 8 11
Mod.11 75.36 16 1 8 41
Mod.12 17.30 3 6 9 18
Mod.13 55.16 7 4 8 44
Mod.14 170.19 41 6 11 89
Mod.15 340.29 63 4 13 260
Mod.16 193.23 7 6 13 55
Mod.17 34.43 2 6 6 7
Mod.18 91.62 10 6 6 30
Mod.19 5.40 7 4 8 16
Mod.20 22.17 9 8 6 54
Mod.21 38.91 7 6 5 29
Mod.22 38.51 29 4 8 48
Mod.23 35.98 7 8 21 21
Mod.24 118.82 19 6 6 60
Mod.25 45.23 7 3 6 48
Mod.26 45.41 12 6 9 72
Mod.27 37.69 15 4 8 66
Mod.28 37.01 10 6 6 14
Mod.29 41.62 3 5 6 12
Mod.30 43.93 9 4 6 8
Mod.31 128.48 35 3.6 7.75 136

 - 640 -

• The coefficient of determination, R2 - it is the amount of
variation explained by the regression equation which is used
to predict future outcomes on the basis of other related
information. It is a statistical term saying how good the
particular generated equation is at predicting functional
defects. R-Sq. value must be above 50%.
• The F-ratio is used to test the hypothesis that all regression
coefficients are zero at statistically significant levels.
• Where parametric testing is appropriate, a significance
level of α = 0.05 was adopted for statistical inference. For
example, all interval estimates are reported using confidence
level 95%.

Large deviations in size estimation area require model
performance comparison using some heuristic rejection
rules that compare more than just mean performance data
[12]. The results for each validated method were compared
using each treatment of MMRE, SDMRE, and larger R2

correlation. MMRE comes from the mean magnitude of the
relative error, or MRE, the absolute value of the relative
error:

actualactualpredictedMRE /−= (2)
The mean magnitude of the relative error, or MMRE, is the
average percentage of the absolute values of the relative
errors over an entire data set. Given n tests (estimators), the
MMRE is:

∑
−

=
n

i i

ii

actual
actualpredicted

n
MMRE 100 (3)

The standard deviation, or SDMRE, is root mean square of
MRE. Given a n tests (estimators), the SDMRE is:

∑ −=
n

i
iMRE MMREMRE

T
SD 2/1)(100 (4)

!

! !

 Fig. 2 DOE->SRM MINITAB ver.16 statistical software screenshots
!

The initial linear regression model was built using DOE
-> SRM options in MINITAB ver.16 statistical software,

without X1, X2, X3, X4 independent variables interaction to
estimate test effort Y [Day], as the dependent variable, using
the proposed metrics values from Table I. Then we
developed linear regression model, with independent
variables interaction, to estimate test effort Y [Day] using
all the proposed metrics values from Table I. All regression
model candidates are expressed with equation (5) to (8).

 X4*0.3498+ X3*0.367-
 X2*0.775 -X1*0.50712+ 16.237=Y[Day] (5)

 X4*X3*0.273 - X4*X2*0.074-
X3*X2*0.364+ X4*X1*0.015- X3*X1*0.707-

 X2*X1*0.72+ X4*1.776- X3*0.478
- X2*0.376- X1*4.606+22.962=Y[Day]

 (6)

X4 *0.8773=Y[Day] (7)

X4 *0.4341=Y[Day] (8)

In second phase new regression models candidates were
designed and cross validated, as well as previous TTE
models designed in the first phase, using new Dataset_2
presented in Table II, which is adapted from published work
[3]. As for the type of software which data is collected, it
comprises of web-based and component-based developed in
Java, PHP or Hypertext Preprocessor and .NET. During this
phase, further refinement is done to the previous equations.
Realizing the need to generate prediction model that is both
practical and makes sense from the software engineering
practitioners, the predictors have been revised so that only
logical predictors selected by filtering metrics that contain
only valid data and reducing the model in order to have
logical correlation with TTE.

TABLE II. DATASET_2 FROM 14
PROJECTS

Project

Y
TTE
[Day]

X4
#Test
cases

 X5
Size

[KLOC]

 X6
#Requir.
 Pages

 X7
#Design
Pages

A 16.79 224 28.8 81 121
B 45.69 17 6.8 171 14
C 13.44 24 5.4 23 42
D 4.9 25 1.1 23 42
E 4.72 28 1.2 23 54
F 32.69 88 6.8 20 70
G 64 149 4 38 131
H 5.63 24 0.2 26 26
I 9.13 13 1.4 15 28
J 89.42 306 36 57 156
K 17 142 12.3 162 384
L 8.86 40 3.8 35 33
M 30.99 151 26.1 88 211
N 41.13 157 24.2 102 11

 - 641 -

Note, please, that we included in Dataset_2 new software
metrics for independent variables X5 (software Size in
KLOC), X6 (#Requirement document Pages) and X7
(#Design documents Pages), as well, old X4 (#Test cases) in
order to ivestigate their influence on Testing Time Effort
i.e.Y [Day] estimation model for all 14 projects presented in
Table II. All regression model candidates are expressed with
equation (9) and (10) formed by the Dataset_2.

X7*0.1261 - X6*0.1852
 + X5*1.633- X4*0.4341+ 3.3448=Y[Day] (9)

X7*0.1261-X4*0.4341=Y[Day] (10)

!

We did small investigation to build TTE estimation model
based on Work breakdown structure – WBS method i.e.
WBS using software artifacts: documentation and program
SLOC produced in SDLC and STLC.
We propose for software artifacts: #Requir. Pages, #Design
Pages and estimated [1,2,4,7] application Size [KLOC],
according to good estimation accuracy of the regression
model based on independent variables X4, X5 (Size
[KLOC]), and X6 (#Requirement document Pages) and X7
(#Design documents Pages) in Dataset_2. Using mentioned
software artefacts we build new test effort estimation
model:

∑
=

N

1P

TTA) TTE(Phase=Y[Day] (11)

Where, N=6 phases, TTE(Phase TTA) - is average (norm,
standard) effort rate to test developed (produced) software
artifacts (TTA -Testing Time of Artifacts) in phase P=1, 2,
3…6. For average (norm, standard) testing time rate we
used data from literature survey done by Wagner [13].
For development Phase:
P=1, average rate to test Requirements is 8 Pages/Day, and
TTE(Req.) = #Req. Pages / 8 ;
P=2, average rate to test Design documents is 30 Pages/Day,
and TTE(Des.) = #Des. Pages / 30;
P=3, average rate to test program code is 600 LOC/Day, and
TTE(Size[KLOC]) = 0.6 Size(KLOC);
P=4, average rate to test program module (UT - Unit test) is
309.3 LOC/Day, and TTE(UT) = 0.3093 Size(KLOC);
P=5, average rate to test software application during
integration phase (IT) is 185.6 LOC/Day, and TTE(IT) = 0.
1856 Size(KLOC);
P=6, average rate to test software system (ST) is 154.6
LOC/Day, and TTE(IT) = 0. 1546 Size(KLOC);

Finally, practical WBS based TTE model is expressed in a
form:

)(2495.1
30
.#

8
Re=Y[Day] KLOCSizePagesDesq.Pages#

++ (12)

 Table III provides an overview of the accuracy of 7
proposed testing effort estimation models. In the first
column coded name TTEMn Di_Vk (n is model number,
i=1 or 2, k=1 or 2) for TTE model is given, where D1 or D2
means that TTE model is designed using Dataset_1 or

Dataset_2 and V1 or V2 means which dataset (Dataset_1 or
Dataset_2) is used for model verification. In the second
column, a list of independent variables used in TTE model
is given. In the third column we provided equation number
for TTE calculation, and in 4, 5 and 6 column, data for R2,
MRE and SDMRE are presented.
One can observe from this table that TTEM3 D1_V1,
TTEM6 D2_V2, and TTEM7 D2_V2 provides best
estimation accuracy: MMRE and SDMRE < 50%.

TABLE III. TESTING TIME EFFORT (TTE)
ESTIMATION MODEL ACCURACY
COMPERISON

I. CONCLUSIONS AND NEXT STEPS
It has been clearly demonstrated that regression analysis has
been successfully applied to formulate a effort prediction
model for software testing process. By using statistical
approach such as regression analysis, the research can justify
the reasons and significance of metrics: Number of Use
cases, Tester Years of experience, Developer Years of
experience, Number of Test cases, software Size in KLOC,
#Requirement document Pages and #Design documents
Pages, from requirement, design and coding phase in
predicting Testing Time Effort.

A number of multiple regression models were developed
with various combinations and transformations of the
independent variables. The models were then analyzed for
their ability to accurately predict the dependent variable.

In carrying out the research, the activities were subjected
to several limitations. First, the research only produced two
general models based on: Use of Historical Data +
Parametric model design and Work breakdown structure –

Model
Name

Independ.
variables

included in
model

Eq.
No.

R2

MMRE

 [%]

SDMRE

[%]

TTEM1
D1_V1 X1,X2,X3,X4 (5) 89.6 54.9 45.3

TTEM2
D1_V1

X1,X2,X3,X4,
X1X2,X1X3,
X1X4,X2X3,

X3X4

(6) 78.8 63.7 94.7

TTEM3
D1_V1 X4 (7) 74.9 52.2 33.1

TTEM3
D1_V2 X4 (7) 74.9 240 164

TTEM4
D2_V2 X4 (8) 64.5 85.4 67

TTEM4
D2_V1 X4 (8) 64.5 65.7 22

TTEM5
D1_V1 X4,X5,X6,X7 (9) 64.5 63.1 51.2

TTEM6
D1_V1 X7,X4 (10) 64.5 38 25

TTEM7
D1_V1 X5,X6,X7 (12) - 47.1 44.8

 - 642 -

WBS method, due to limited number of data points. Second,
data collected is only limited to software development
projects in which their metrics are rigorously collected and
tracked.

Projects that were not involved in metrics collection are
no part of the data collected. Third limitation is that this
research only focuses on V-shaped development model since
that is the process model being adopted by the organization
selected for this research. Fourth, data sets used in this
research is a mix of metrics from web-based and component-
based software. Therefore, findings of the research are the
final result of using metrics from both software types.

More variants of the model could be developed by
improving the model to predict test effort of projects with
high number of intensive test activities (more than 6)
including: non-functional test activities such as security
testing, usability testings and performance testing. To
achieve this, related metrics affecting these nonfunctional
testing must be well defined, collected and tracked. It is
hoped that the outcome of this research has been able to
contribute and expand existing knowledge in software
engineering estimation domain, particularly in the area of
software testing, software quality management and software
process planing. With the continuous effort in improving
such prediction, more high quality software product can be
developed in the future.

ACKNOWLEDGEMENTS
This work has been done within the project ‘Optimal
Software Quality Management Framework’, supported in
part by the Ministry of Science and Technological
Development of the Republic of Serbia under Project
No.TR-35026.

REFERENCES
[1] Jensen. R, Putnam. L, Roetzheim. W, Software Estimating

Models: Three Viewpoints, CrossTalk, pp.23-29, February
2006.

[2] Jones. C, “Software Assessments, Benchmarks, and Best
Practices”, Addison-Wesley Professional: Boston, MA. 2nd
ed. McGraw-Hill, New York, 2000.

[3] Suffian. M, Suhaimi. I, A Prediction Model for Functional
Defects in System Testing using Six Sigma, ARPN Journal of
Systems and Software, Volume 1 No. 6, September 2011. pp.
219-224.

[4] Boehm BW, Horowitz E, Madachy R, Reifer D, Clark BK,
Steece B, Brown AW, Chulani S, Abts C. 2000. Software
Cost Estimation with COCOMO II. Prentice Hall PTR: Upper
Saddle River, NJ.

[5] Chulani.S, Boehm.B, Modeling Software Defect Introduction
Removal: COQUALMO (Constructive QUALity MOdel),
USC-CSE-99-510, The Center for software Engineering,
University of Southern California, Los Angeles, CA, 1999.

[6] Yooichi. Y, Mitsuhiko. K, Software Cost and Quality
Analysis by Statistical Approaches, The 20th International
Conference on Software Engineering , Kyoto, Japan ,April 19
- 25, 1998 .

[7] S. H. Kan, “Metrics and Models in Software Quality
Engineering,” Second Edition, Addison-Wesley, 2003.

[8] Lj. Lazić and N. Mastorakis, “Cost Effective Software Test
Metrics,” WSEAS TRANSACTIONS on COMPUTERS,
Issue 6, Vol. 7, no 6, 2008, pp. 599-619.

[9] Srivastava. R, Kumar. S, Singh. P, Raghurama. G, Software
Testing Effort: An Assessment Through Fuzzy Criteria
Approach, Journal of Uncertain Systems, Vol.5, No.3,
pp.183-201, 2011

[10] Glass, R.L., Software Testing and Industry Needs, IEEE
Software, 2006.

[11] Sherriff, M., Boehm, B. W., Williams, L., and Nagappan, N.,
An Empirical Process for Building and Validating Software
Engineering Parametric Models, North Carolina State
Univeristy CSC-TR-2005-45, October 19 2005.

[12] Menzies, T., Chen,Z., Hihn, J., Lum, K., Selecting best
practices for effort estimation“, IEEE Trans. on Soft. Eng.
32(11), 2006.

[13] Wagner. S, A literature survey of the quality economics of
defect-detection techniques, In Proc. 5th ACM-IEEE
International Symposium on Empirical Software Engineering
(ISESE ’06), 2006.

