
INFOTEH-JAHORINA Vol. 10, Ref. E-I-14, p. 456-460, March 2011.

 456

PRIMENA ML DESIGNER NA UNAPREĐENJE FUNKCIONALNE BEZBEDNOSTI
MEDICINSKIH UREĐAJA

IMPROVING FUNCTIONAL SAFETY OF MEDICAL DEVICES BY USING MLDESIGNER

Volker Zerbe, University of Applied Sciences Erfurt, Germany
Sebastian Niller, Ilmenau University of Technology, Germany

Miroslav Božić, Darko Todorović, and Goran S. Đorđević,
University of Niš, Faculty of electronic engineering,

Aleksandra Medvedeva 14, P.O. Box 73, 18000 Niš, Serbia

Sadržaj – Savremeni medicinski uređaji moraju da ispune stroge zahteve na bezbednost,
pre svega zbog mogućnosti da povrede čoveka u svom okruženju.Na primer, akcija
bezuslovnog prekida rada mora uređaj da dovede u bezbedno stanje za najkraće moguće
vreme tako da pacijent ne bude povređen. Pored toga, takva akcija mora biti izvedena na
potpuno pouzdan način. Uz pomoć okruženja kakvo je MLDesigner moguće je analizirati
bezbednost sistema još u ranim fazama projektovanja. Ovakav pristup podrazumeva system
orijentisan događajima kao i adekvatan domen projektovanja. Pogodnim primerima
testiranja može se celokupan sistem testirati i analizirati. Razvijeni model potom
ispunjavaće sve zahteve koji su postavljeni na početku projektovanja, održavši osnovnu
funkciju – potpunu pouzdanost pri ostvarenju funkcije bezbednosti. U ovom postupku, prvo
se razvija VHDL kod. Ovaj kod se može simulirati i testirati pre primene u samom
sistemu.U ovom radu daje se primer dodataka MLDesigner-a, tako da se VHDL opis
sistema bezbednosti može posmatrati u kontekstu modela celokupnog sistema. Integracijom
specifikacija niskog nivoa složenosti i zahteva u izvršne apstraktne modele mogućnost
greške može biti značajno umanjena tokom procesa projektovanja. Ova metodologija
obezbeđuje značajna unapređenja funkcionalne bezbednosti. Sledeći ovaj tok procesa
projektovanja razvili smo i testirali konkretan sistem bezbednosti jednog medicinskog
uređaja.

Abstract - Medical devices are a subject of strict safety regulations due to possible damage
to the patients and operators. For example, an emergency stop action has to guide the
medical device into a safe state, so that the patient is protected from a collision. Such
action must be performed with absolute certainty in function. With the help of the system
design tool ML Designer the medical device as an overall system is modeled already in the
early design phases. This approach concerns an event-oriented system thus asking for the
DE-domain (DE - discrete event) modeling by MLDesigner. By suitable test scenarios the
overall system can be simulated and validated. The developed model will have the
specifications of the design and the implementation of the safety system. First we develop
the VHDL code. This code can be again simulated and validated before the system is
implemented. The paper also gives an extension of MLDesigner, so that now the VHDL
description of the safety system is in the context of the modeled overall system. By
integration of lower level specifications into executable abstract models the fault liability
can be decreased significantly through complete design process. This methodology ensures
substantial improvement of the functional safety of medical devices. Based on that design
flow we developed and validated a safety board supervising the standard event-driven
components to be used in medical devices.

1. INTRODUCTION

Modern medical systems implement an increasing number

of features at the same time of complying with rising
requirements. The resulting complexity of a system is
handled by integration of digital electronics and software to
handle communication of subsystems. A product

development demands collaboration and interaction of
different engineering disciplines, all using their specific
languages, notations, design methods and tools. A typical
medical system consists of, but is not limited to, mechanical,
electrical, electronic and software subsystems. The growing
number of subsystems and the complexity caused by their
interaction in a product makes it impossible to foresee all

 457

planned and unwanted effects (that could cause failures) by a
development engineer focused on one field. Therefore, the
simulation models have to be employed to analyze and
optimize a design at each stage of a design flow. Engineers of
different disciplines, to cooperate in design of heterogeneous
systems, need a unified and comprehensive simulation of a
system as a whole using a single environmental model. There
are different ways to achieve this. One way is to use a single
general simulator that provides special libraries or extensions
for every field of engineering incorporated into the design.
Another way would be to link several simulators customized
to distinct fields of engineering to co-simulate a whole
system. In this paper we present a link between the simulators
MLDesigner and GHDL, to support a seamless design flow
of digital systems, [1].

2. MLDESIGNER

“MLDesigner is a software system for the design of

missions, systems, products, and chips”, [2]. Systems are
modeled by hierarchical block diagrams, connectivity and
program source code forming an executable model (Fig. 1).
Each block has a distinct type, defined by shape, input and
output ports.

Fig. 1. MLDesigner modeling elements

A module is a block consisting of modeling elements and

their connectivity. It is used to group elements related within
a system, to name them, and to hide complexity. Module
blocks can be used to build subsystems that are instanced
multiple times. Modules must not contain instances of
themselves directly or indirectly in most MLDesigner
domains.

A primitive block contains the Ptolemy language source
code to model functionalities. While primitives are usually
not a composition of other modeling elements an
MLDesigner system contrary to a primitive is not part of any
other modeling block but contains all other elements of a
design. MLDesigner systems act like test-benches of other
simulation tools; they are an element necessary to start a
simulation run.

Primitives and modules communicate to each other
through ports on their boundaries. Ports are of type input,
output or input/output and do have a specific data type to
communicate over relations they connect through.

Another way of primitives interacting is by shared
elements: memories, events and resources. Shared elements
are described more in detail in [2].

Parameters are constant values to be set prior to the start
of a simulation run and can be read by methods in the
Ptolemy language source code of primitives.

Each system, module and primitive belongs to an
MLDesigner domain. Selectable targets and schedulers of

that domain manage execution (simulation or code
generation) of the modeling element, thus are responsible for
the simulation semantics of a model.

3. GHDL

GHDL (G Hardware Design Language, where G has no

meaning) is a free VHDL (Very High Speed Integrated
Circuit Hardware Description Language) simulator developed
by Tristan Gingold [3] under the GPL (General Public
License). It is a language frontend in GCC (Gnu Compiler
Collection), programmed in Ada. GHDL analyses, elaborates
and compiles an executable simulator out of VHDL input
sources. The compiled simulator, when running, simulates
the design and writes a trace file of its signal values. VHDL
language features to input and output files and to print or
report messages.

The front-end parse a VHDL source and generates an
intermediate internal representation of the source which is
then passed to the code generator backend of the GCC.
GHDL features several methods to interface the compiled
simulator, the simulator linking between MLDesigner and
GHDL here has been implemented using the VPI interface
that is stacked on top of GHDL’s PLI/programming language
interface AVHPI.

GHDL further is able to print sources with references as
HTML easily.

4. VHDLS DOMAIN

In the following section the implementation of the
VHDLS domain in MLDesigner is described. This domain
communicates to a GHDL compiled simulator for designing
digital circuits.

To represent the structure of a VHDL design in
MLDesigner, a relation of structural elements in VHDL and
structural elements in MLDesigner is proposed in Table 1.

A VHDL test-bench is an element of a design necessary
to start a simulation. It is usually composed of the model
under design and a model of its environment that generates
inputs to the system and analyses outputs from the system. A
VHDL test-bench corresponds to an MLDesigner system.

VHDL MLD VHDLS domain MLD MML
Test-bench MLDesigner System Model
Port Port Port
Component Module Entity
Component Primitive Primitive

Table 1: Mapping VHDL structure to MLDesigner

(extract).

A port in a VHDL model is mapped to a port in an

MLDesigner model. Ports in VHDL can be of type input (in),
output (out) or they can be of bidirectional type (in-out). Only
the input and output port types are mapped, bi-directional
typed ports are currently unsupported. Typical uses of in-out
ports are data busses of processors. An intermediate solution
to interface in-out ports in the VHDLS domain is to direct the
data of an in-out typed port inside a VHDL model to one
input and one output port of a wrapping both, the entity and
architecture.

 458

Only the std_logic and std_logic_vector data types are
supported on ports, they are mapped to MLDesigner ports of
data type string. This limitation imposes no problem since
these two types are used at the boundary of most VHDL
designs to describe electronic values on pins of an IC. The
std_logic_vector data type is also well suited for this task
because it allows defining the bit order of its values.

MLDesigner distinct between modules and primitives.
Modules are solely used to model structure of a design;
primitives are used to describe the function. VHDL has no
such distinction, components contain code to describe
behavior and function, but may also contain further
component instances connected to signals that footprint into
the code (signals connected to a component instance can be
read and driven by functional code of the enclosing
component). VHDL component instances are mapped to
MLDesigner modules.

Generic constants in VHDL can be mapped to
MLDesigner parameters. The mapping of generic constants
to parameters is not implemented yet.

VHDL signals and connections set up by the VHDL port
map language construct are mapped to MLDesigner relations
(not all VHDL language connection constructs can be
converted to MLDesigner port relations at this time).

5. STRUCTURAL CONVERSION

Now it is described the methods developed to derive the

structure of an existing VHDL design and to convert the
derived structure to a hierarchical MLDesigner representation
in the VHDLS domain.

Following is a list of terms used in VHDL and its
grammar.

• A design in VHDL is described by one or more design

files.
• Each design file contains one or more design units.
• A design unit can contain any number of entity

declarations and architecture bodies
(among other language constructions).

An entity declaration can contain a formal port clause in
its entity header. Port names, types and data types of an entity
to be used in the conversion are derived out of the formal port
clause:

entity_declaration ::=
 entity identifier is
 entity_header
 entity_declarative_part
 [begin
 entity_stateent_part]
 end [entity] [entity_simple_name] ;

 entity_header ::=

 [formal_generic_clause]
 [formal_port_clause]

An architecture body has a name identifier, and refers to

the entity it implements by its entity name. The architecture
body contains an architecture declarative part and an
architecture statement part. The architecture declarative part
can have component declarations to be instantiated in the
architecture statement part.

architecture_body ::=
 architecture identifier of entity_name is
 architecture_declarative_part
 begin
 architecture_statement_part
 end [architecture] [architecture_simple_name] ;

architecture_declarative_part ::=
 { block_declarative_item }

Block_declarative_item ::=
 subprogram_ declaration
 | subprogram_body
 | type_declaration
 | subtype_declaration

A component declaration has a name identifier that refers

to the name of its entity and a local port clause that has to
redeclare ports of the formal port clause of its entity.

component_declaration ::=
 component identifier [is]
 [local_generic_clause]
 [local_port_clause]
 end component [component_simple_name] ;

An architecture statement part can contain component

instantiation statements that in turn contain port mappings
from the instantiated components ports to ports of the
instantiating entity or to signals declared locally in the
architecture.

Architecture_statement_part ::=
 { concurrent_statement }

concurrent_statement ::=
 block_statement
 | process_statement
 | concurrent_procedure_call_statement
 | concurrent_assertion_statement
 | concurrent_signal_assignment_statement
 | component_instantiation_statement
 | generate_statement

component_instantiation_statement ::=
 instantiation_label :
 instantiated_unit

 [generic_map_aspect]
 [port_map_aspect] ;

Instead of developing a new parser to extract the structure

of a VHDL design, the GHDL has been extended to export its
internal VHDL structure representation, called IIR, to XML
format after parsing.

An --xml command line switch has been added that
outputs an XML representation of the design. A patch
extending GHDL will be available at [4]. XML is a
widespread language to describe and exchange structured
data. Most of the today programming languages feature
libraries to handle XML. By generating XML out of VHDL it
is possible to use these high level programming languages to
operate on VHDL designs without having to develop a parser
in the first place. For example, if inner nodes of such an
XML tree representation contain tags that represent parsed
non-terminals, obtaining the names of all component
instantiation statements of a distinct architecture in a design

 459

file becomes a simple operation. Prior to this work, XML
representations of VHDL designs like HDML have been
defined [5, 6].

The GHDL parser front-end supports sources of several
VHDL standard revisions produces good error messages and
is able to parse large input files. GHDL represents the model
internally following the IIR defined in [7]. Many nodes in the
IIR are named after terminals and non-terminals of the
VHDL grammar.

Using the --xml command line switch, for each design file
of a design GHDL produces one XML file that contains the
nodes of the GHDL IIR after parsing.

6. GHDL XML TO MLDesigner MML CONVERSION

An MLDesigner model is described by a set of MML files

that contain hierarchy, connectivity, parameters and a set of
Ptolemy language files that contain the function of primitives.
The MLDesigner MML file format is an XML dialect
developed as a variant of the MoML file format in [8] and
analyzed as part of [9]. To represent structure of a VHDL
model in MLDesigner, the IIR XML files generated by
GHDL as shown in the previous section are transformed to
MML files. There are many ways for this task, XSLT being
one prominent technique often used. This work uses the HXT
[10] library to carry out the transformation. HXT is a Haskell
library for the purpose of processing XML. Although it has
support for XSLT, a more general way is employed for the
conversion. First the XML output of GHDL is parsed by
HXT resulting in an XmlTree DOM, which is a tree
representation of the XML files with generic nodes.

Fig. 2. XML to MML Conversion

A coupling of the SDF and/or the DE domain to the

VHDLS domain has been developed. An important
synchronous VHDL model appears for example as a SDF
wormhole to a module of the VHDLS domain. To co-
simulate and synchronize a VHDL model as part of a model
in the SDF domain, the VHDLS target forks a process in its
setup method using the UNIX fork system call, then replaces
the new MLDesigner instance by the GHDL simulator using
the Unix execl system call [11]. The location of the GHDL
simulator is given by the GHDLSimulatorPath and
GHDLSimulator target parameters.

7. MEDICAL DEVICES

So far the subject was the development of a VHDLS

Domain for the tool MLDesigner. The VHDLS Domain takes
over thereby the coupling between MLDesigner and the
GHDL simulator.

To improve the functional safety of medical devices
means:

• to implement a few number of emergency stop function,
but also,

• to design a fault free system.

The only solution is, to develop the system model based.
Means, first an overall model is to be specified even with
MLDesigner. System requirements are transformed in a
formal model. The figure below shows the top level
MLDesigner Model of the developed medical device. Based
on this executable specification simulations can be done right
now in the early design phases, [12]. The simulation of the
system allows a validation, hence faults can be found in the
early design stages.

Fig. 3. Top level MLDesigner Model of the developed

medical device

With that formal model we have now a specification for

designing the safety board. One of the logic functions of the
safety board is the emergency stop.

y = (x_0x_1 v x_2x_3 v x_4x_5 v x_6 v x_7 v x_8)x_test

This equation is easy and can be specified in VHDL,

simulated and implemented. Figure 4 shows the final
implementation.

But the point is that the safety board must work under all
conditions being embedded as the top priority subsystem in
the medical device. Does this work? With the help of the
explained tool linking between the GHDL simulator and
MLDesigner the in VHDL specified emergency stop
functions could be validated.

Fig. 4. The Hardware implementation of the safety board

We could proof successfully during all design phases that
the emergency board works as well as the final implemented
system.

8. CONCLUSIONS

A link between simulators of design in the standardized
and widely used hardware description language VHDL and
MLDesigner has been developed to support the design of
digital systems. Integrating a VHDL simulator into
MLDesigner enables design flows using a single
environmental model or test-bench in specification,
development, integration, test and evaluation. These design

 460

steps have been carried out and validated in a short explained
small example. A tool coupling has been used to simulate the
whole medical devices with the synthesized the Safety board.
Since a vast amount of new processor architectures are now
released along with their hardware description, the tool
coupling can be seen as one step further into the direction of
unified hardware/software co-simulation and verification
based on MLDesigner framework.

ACKNOWLEDGEMENT

This paper is supported in part by the Project Grant III44004
(2011-2014) financed by Ministry of Education and Science
Republic of Serbia.

REFERENCES

[1] Niller, S., A Model-Based Design Flow for Digital Systems in
MLDesigner. Diploma thesis, Ilmenau University of Technology,
2010.
[2] MLDesign GmbH, MLDesigner Documentation Version 2.7.
2007.

[3] Tristan Gingold, GHDL Guide. 2010.
[4] Niller, S., Patch to extend GHDL version 0.29 with XML
output of its IIR. www.stud.tu-ilmenau.de/~seni-in/ghdl-0.29-
xmlpatch, 2010
[5] Reshadi, M. H.; Gorji-Ara, B. and Navabi, Z., HDML:
Compiled VHDL in XML. 2000.
[6] Zamfirescu, A., Zhao, Z. HXML. A New Approach to managing
Hardware Information.
[7] Willis, J., et. al. Internal Intermediate Representation (IIR)
Specification Version 4.6. (Trial Implementation Draft of 2/3/99),
1999.
[8] Hauguth, M., Entwurf eines XML-basierten Dokumentenformats
für Blockdiagramme. Diplomarbeit, Technische Universität Ilmenau
2000.
[9] Kornemann, S., Ansätze zur Bearbeitung von MML-Modell
Beschreibungen mit Eclipse. 2009.
[10] Schmidt U., et. al., HXT Haskell XML Toolbox.
http://www.fh-wedel.de/si/HXmlToolbox/index.html, 2010.
[11] Stevens, W. R., Advanced Programming in the UNIX
Environment. Addison Wesley 1993.
[12] Zerbe, V., Backhaus, M., Model based Design of an Efficient
CORDIC Algorithm Implementation. INDEL 2010, Banja Luka.

