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VEROVATNOĆA GREŠKE PO BITU PRI DETEKCIJI DIFERENCIJALNO KODOVANOG DUOBINARNOG QPSK SIGNALA U PRISUSTVU NEIDEALNE EKSTRAKCIJE REFERENTNOG NOSIOCA
BIT ERROR PROBABILITY OF DIFFERENTIALLY ENCODED DUOBINARY SHAPED QPSK SIGNALS IN THE PRESENCE OF IMPERFECT CARRIER SYNCHRONIZATION
Zlatko J. Mitrović, Hidroelectric power station PD "HE Đerdap" d.o.o. Kladovo, Serbia 
Bojana Z. Nikolić, Goran T. Đorđević, Faculty of Electronic Engineering, Niš, Serbia
Predrag Petrović, IRITEL, Beograd, Serbia
Sadržaj - U radu će biti određena verovatnoća greške po bitu pri detekciji diferencijalno kodovanog duobinarnog QPSK (Quadrature Phase-Shift Keying)  signala koji se prostire kroz Gaussov kanal uzimajući u obzir uticaj neidealne ekstrakcije referentnog nosioca. Ekstrakcija referentnog nosioca se vrši pomoću fazne petlje iz primeljenog modulisanog signala. Fazna greška, koja predstavlja razliku između faze primljenog signala i procenjene faze, biće modelovana kao slučajni proces sa Tikhonovljevom funkcijom gustine verovatnoće.  Pri analizi biće uzet u obzir i uticaj degradacionog faktora poznatog kao squaring loss. Biće prikazani numerički rezultati, dobijeni analitičkim pristupom, koji će ilsutrovati u kojoj meri na vrednosti verovatnoće greške utiču srednji odnos snaga signala i šuma po bitu u kanalu i proizvod propusnog opsega ekstraktora referentnog nosioca i trajanja jednog bita (BL(Tb). Ova veza između snage signala, brzine prenosa podataka i širine propusnog opsega fazne petlje biće od koristi pri projektovanju filtara fazne petlje. Dobijeni numerički rezultati biće upoređeni sa rezultatima koji se dobijaju pod pretpostavkom idealne ekstrakcije referentnog nosicoa.  
Abstract - This paper will present the bit error rate of differentially encoded duobinary shaped  quadrature phase-shift keying (QPSK) signals transmitted over Gaussian channel under the influence of imperfect carrier signal extraction. The phase-locked loop (PLL) is used for reference signal extraction from modulated signal. The phase error is difference between received signal phase and extracted reference signal phase, and is modeled as stochastic process with Tikhonov probability density function.  The influence of degradation term, referred to as squaring loss, will be taken into account. The numerical results, determined by analytical approach, will illustrate the bit error rate dependence on average signal-to-noise ratio per bit and loop bandwidth-bit time product (BL(Tb). This relation among signal power, bit rate and PLL bandwidth will be useful in designing loop filters.  The determined numerical results will be compared with those valid under perfect reference signal extraction.
1. INTRODUCTION
Very often certain transmission techniques, which allow controlled intersymbol interference, are used in order to employ some its favourable features [1-2]. The outline of one of those techniques is to lead the signal which should be transmitted, into the filter with transfer function of cosine form. This duobinary technique enables transmission with Nyquist rate (2fg) and minimum of necessary bandwidth (-fg, fg), while the low-pass filter need not to be ideal. Comparing with the case of ideal low-pass system, transfer function of cosine form is easier to be approximated and more resistant to synchronization errors. In order to avoid error propagation in decoding process, the symbols are usually precoded in the transmitter. This technique is known as differential coding.

In [3] error probability of the receiver for differentially coded duobinary shaped quaternary phase shift-keying (QPSK) signals in the presence of the imperfect reference carrier signal recovery is determined. It is achieved under the assumption of the constant phase error. System performance degradations are calculated for different constant values of the phase error.

However, in this paper system performances are determined for the case of differentially coded duobinary shaped QPSK signal detection while the phase error is a random variable. It is assumed that the reference carrier signal recovery is performed using the phase locked-loop (PPL). The numerical results, obtained using the nonlinear model of the phase-locked loop, are shown and compared with the results obtained using the aproximation model and the upper bound for the error probability.
2. SYSTEM MODEL
      In Fig.1 the basic diagram of the system for differentially coded duobinary shaped QPSK signal transmission is 
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Fig. 1.  Basic diagram of the system for differentially coded duobinary shaped QPSK signal transmission.

presented. A binary signal with the rate of  1/T  is converted into two independent parallel bit strings 
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are led into two different channels, where the precoding (the differential coding) is performed, as it is presented by the equations
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where 
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 represents the addition modulo 2 operation. Bits 
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 are actually rectangular pulses which can be presented as
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while
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These signals are then multiplied by 
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 in upper and lower modulator branch, respectively. The signal of their summation is passed through the filter with the transfer function given as
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and the corresponding pulse respond
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As it is already mentioned, by leading the signal through this filter, duobinary coding is performed. The signal, sent into the communication channel, has the form 
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Considering the fact that the Gaussian noise impacts the signal transmission, the input of the receiver has the form
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where n1(t) and n2(t) are the quadrature components of the narrowband Gaussian noise with zero mean value and the variance 
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[image: image29.wmf](

)

t

q

. After the multiplication, signals in upper and lower branch are


[image: image30.wmf](

)

(

)

(

)

å

-

j

-

=

n

n

I

t

nT

t

h

c

t

r

cos

2



[image: image31.wmf](

)

(

)

(

)

(

)

(

)

(

)

(

)

t

t

n

t

t

n

t

T

n

t

h

d

n

n

j

-

j

+

+

j

+

-

-

å

sin

cos

sin

1

2

2

1


(8)

and
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respectively. The phase error 
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 represents the difference between the phase of arriving signal and the phase of the recovered reference carrier signal from the PPL, 
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where it is worth [3]
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It is important to notice that, except the two bits from that same branch 
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 bits influences the decision in the upper branch of the detection circuit. This influence is known as quadrature distortion and is consisted in the value of the parameter A (12). In the case of ideal referent carrier signal extraction (φ(t)=0), there is no cross-linking between the branches, i.e. bits from the lower branch do not influence the bit detection in upper branch and inversely. 

Sampled signals in both branches have the same form, (10) and (11), thus one can consider only one of the branches for obtaining the error probability Pe. When the error probability in the upper branch is denoted as PeI, and the error probability in the lower branch as PeQ, the error probability of the receiver can be represented as
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If we take
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. In the further text, the expression for error probability will be developed considering the signal detection only in one of the branches in detection circuit. Consequently, Table I can be formed.

TABLE I
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Conditional error probability is [3]
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i.e.


[image: image64.wmf]÷

÷

ø

ö

ç

ç

è

æ

÷

÷

ø

ö

ç

ç

è

æ

s

j

-

j

-

+

÷

÷

ø

ö

ç

ç

è

æ

s

j

+

j

-

-

-

÷

÷

ø

ö

ç

ç

è

æ

÷

÷

ø

ö

ç

ç

è

æ

s

j

-

+

÷

÷

ø

ö

ç

ç

è

æ

s

j

+

+

=

j

2

sin

cos

2

1

2

sin

cos

2

1

125

.

0

2

sin

1

2

sin

1

25

.

0

5

.

0

,

A

erfc

A

erfc

A

erfc

A

erfc

P

A

e


(16)

where 
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 is the complementary error function [4]. In order to obtain the average error probability, one should average the conditional error probability (15) over the phase error φ and the amplitude of the quadrature distortion A
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As there is an infinite number of A values, this problem can be solved by determining the maximum A value and setting  the upper limit for the error probability or by taking into account a finite number of  elements from the summation in (17), i.e. only those which significantly affect the value of  the mentioned summation. The maximum value of the quadrature distortion A [3] is
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Using this result as the upper limit for the conditional error probability, one can obtain
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and the upper limit for the average error probability is 
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Using the other method, the approximative average error probability Pea can be obtained by taking into account only the first three, the biggest elements of the summation in (12), so that the value of the quadrature distortion A is
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The other elements of the summation, starting with the fourth one, 
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 are independent binary numbers with the uniform distribution, there are eight possible, equally probable A values. Conditional error probability can be determined as
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where Ai, according to (21), obtains the values: 0, 
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is given by (16). The average error probability is then
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In (20) and (23) 
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 represents the probability density function (pdf) of the phase error and it fallows Tikhonov distribution [5]
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where (eq represents an equivalent signal-noise ratio (SNR) in the PLL, which is given as 
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The SNR in the PLL (PLL is
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where BLTb is the loop bandwidth-bit time product, and 
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 is referred to the squaring loss. For the high SNR implementations (HV), this squaring loss can be obtained using expression [5], [6], [7]
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In (26) and (27), ( represents an instantaneous bit SNR and erf(() is the error function [4].
3. NUMERICAL RESULTS
In Fig. 2. the plot of the upper bounds for several values of the loop bandwidth time product (BLTb) is shown. One can see that the value of BLTb which can provide good receiver performances, is 0.01 because below this value there is not a significant improvement of the performances. When value product BLTb increases, a degradation of the system occurs. If we maintain the error probability at the value 
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and the product BLTb  changes from 0.5 to 0.001, the loss in average SNR is about 10dB. 
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Fig. 2. Plot of the upper bound as a function of average SNR showing degradation as function of receiver element BLTb .
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Fig. 3.Plot of the aproximation results as a function of average SNR showing degradation as function of receiver element BLTb 
In Fig. 3. it can be seen that degradations of the system rise with the increase of the loop bandwidth time product. Here it is more evident that very good receiver performances are achieved for the value BLTb =0.01. The influence of the factor BLTb  is presented more realistic in this case.
In Fig. 4. one can see that, for lower values of BLTb  differences in performances are lower, and they rise with the  increase of BLTb. The upper bounds for error probability are more acceptable in the receivers of better quality, which have better PLL.
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Fig. 4. Comparasion of upper bound and aproximation results for several value factor BLTb.
4. CONCLUSION
In this paper the bit error rate of differentially encoded duobinary shaped quadrature phase-shift keying (QPSK) signals transmitted over Gaussian channel under the influence of imperfect carrier signal extraction is presented. The phase-locked loop (PLL) is used for reference signal extraction from modulated signal. The phase error is modeled as stochastic process with Tikhonov probability density function. The influence of degradation term, referred to as squaring loss, was taken into account. The numerical results, determined by analytical approach, illustrate the bit error rate dependence on average signal-to-noise ratio per bit and loop bandwidth-bit time product (BL(Tb). This relation among signal power, bit rate and PLL bandwidth can be useful in designing loop filters.  
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